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In this paper we study quantum walks of electrons on a graph. This graph is composed of Si
quantum dots arranged in a circle. Electrons can tunnel between neighbouring dots and interact via
Coulomb interaction. We show that this mutual repulsion leads to entanglement. Fermionic entan-
glement dynamics is evaluated by several measures. Current detectors are considered in the paper
as a noisy environment. We show that depending on the noise parameters fermionic entanglement
can be annihilated, preserved, created for a certain time or re-created after annihilation.
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I. INTRODUCTION

Quantum walks are quantum counterparts of classi-
cal random walks. But unlike classical walker, quan-
tum walker’s current state is described by a superpo-
sition of positions. Quantum walks is expected to have
implications for various fields, for instance, as an ele-
ment for quantum computing, quantum algorithms [1]
or for understanding of the efficient energy transfer in
biomolecules for photosynthesis [2]. In our paper we
study quantum walks as an advanced tool for quantum
information processing.

There are a lot of theoretical and experimental results
in the field of quantum walks [3, 4]. But walks with
multiple identical walkers, both the non-interacting and
interacting cases, are relatively unexplored.

We investigate the system of coupled quantum dots
that form a circle. Quantum dots are promising elements
of a quantum computer. It was shown that quantum
dots could be used to encode quantum information [5–8].
Quantum dot qudit consists of quantum dots with one
electron connected by tunneling. Dots themselves are
formed from the two-dimensional electron gas by field
of gates and these dots are controlled by potentials on
gates. As a result we have a qudit basis states |0〉, |1〉, ...
and |N〉 , which describe the localization of an electron
in 0-th, 1-st or N -th place, respectively. The position of
an electron is measured by current detectors. Detectors
are placed near quantum dots, if there is no charge in a
dot then there is a current in a detector. An electron in
a quantum dot creates a potential barrier, so the current
in a nearest detector is zero [9].

In our paper we study a circle of quantum dots de-
scribed above, but instead of one electron in this scheme
we investigate two electrons. First, we analyse the dy-
namics of non-interacting particles, then we study inter-
acting electrons.
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II. NON-INTERACTING INDISTINGUISHABLE
PARTICLES

We consider a cycle graph with N nodes and two iden-
tical electrons in these nodes (Fig. 1). In this model
electrons are indistinguishable because their wave func-
tions overlap in space. The wave function of electrons
is factorized in the form of Ψ(r, t) = ψ(r, t)χ(t) and is
antisymmetric under particle exchange. A pair of elec-
trons can be combined to form a state with total spin
one χ =

(
α |↓↓〉+ β |↑↑〉+ γ(|↓↑〉+ |↑↓〉)/

√
2
)
/
√

3, or a

state with total zero spin (|↓↑〉 − |↑↓〉) /
√

2. In this pa-
per we study triplet states, i.e. symmetric spin part and
antisymmetric coordinate part of wave function.
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FIG. 1. The scheme of two-particle quantum walk on a cycle
graph with N nodes. Electrons are initially in 0-th and N/2-th
nodes.

We write the coordinate part of spin-1/2 fermionic
wave function in the form of

ψ(r) =

N−1∑
m,k=0

ωmkf
†
mf
†
k |0〉 , ωT = −ω, 2Tr

(
ωω†

)
= I,

(1)
f†m is the fermionic creation operator and |0〉 is the vac-
uum state [10] for an electron on site m, N is the number
of quantum dots in the cycle.

Electrons can tunnel between neighbouring places with
tunnelling amplitude Ω according to the hopping Hamil-
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tonian:

H = ~Ω
N−1∑
i,j=0

(
|xi+1, yj〉 〈xi, yj |+ |xi, yj〉 〈xi+1, yj |

+ |xj , yi+1〉 〈xj , yi|+ |xj , yi〉 〈xj , yi+1|
)
, (2)

where xi and yi are coordinates of first and second in-
distinguishable particles respectively. Ω is responsible
for the barrier height between single quantum dots. The
spin part of the wave function χ remains constant. We
find the evolution of pure state from Schrödinger equa-
tion i~∂ψ/∂t = Hψ, the unitary evolution of density
matrix is ρ(t) = e−iHt/~ρ(0)eiHt/~. This unitary opera-
tor converts the antisymmetric fermionic wave function
to antisymmetric one. The amplitudes of states |ii〉 are
set to zero.
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FIG. 2. Electron density in the i-th node vs. time. The initial
state is (|02〉 − |20〉) |↑↑〉 /

√
2. The period of quantum walk

is equal to π/Ω. In these simulations we put Ω = 0.1 and
N = 4.

Fig. 2 shows charge density dynamics in a system
of 4 nodes. We consider spin state χ(t) = |↑↑〉 be-
cause one can do this in experiment by turning on the
strong magnetic field. The initial coordinate state is
(|02〉 − |20〉)/

√
2. This state describes two indistinguish-

able electrons initially placed in the 0-th and 2-nd nodes.

The same probability distribution dynamics will have
an electron which is initially in a superposition of |0〉
and |2〉 coordinate states. The probability of finding this
single electron in certain node is half of the probability
of finding one of the electrons. And in general, quantum
walk of non-interacting particles are equivalent to one-
particle walk, whose dynamics was studied in [9, 11, 12].

III. INTERACTING INDISTINGUISHABLE
ELECTRONS

Let us now turn to the case of two identical fermions
which interact due to Coulomb interaction. Because of
the repulsion electrons can not be in the same and neigh-
bouring places. The hopping Hamiltonian with the re-
striction of being in the same and neighbouring sites of

the cycle graph is

H = ~Ω
N−1∑
i,j=0

j 6=i,i±1,i+2

(
|xi+1, yj〉 〈xi, yj |+ |xi, yj〉 〈xi+1, yj |

+ |xj , yi+1〉 〈xj , yi|+ |xj , yi〉 〈xj , yi+1|
)
. (3)

Coulomb interaction between two electrons is a re-
source of quantum entanglement. Without this interac-
tion there is no entanglement dynamics. The restriction
of being in the same node with the same spin can not
contribute to the entanglement because this is just the
property of fermionic wave function.

The qualification and quantification of entanglement
between several subsystems is one of the most important
issues in quantum information theory. To describe entan-
glement of electrons we can not use the usual definition
of entanglement of distinguishable particles, because for
identical particles the Hilbert space no longer has a tensor
product structure. The Hilbert space of two electrons is
an antisymmetric product, not a direct product [13, 14].

A. Fermionic entanglement measures

To define entanglement of the indistinguishable
fermions one can use Slater rank [10, 15, 16]. Slater rank
is the minimum number of Slater determinants. This
number is analogous to the Schmidt rank for the distin-
guishable case. Fermions are separable iff Slater rank is
equal to one. That is quantum entanglement arise in a
pure state if there is no single-particle basis such that
a given state of electrons can be represented as a single
Slater determinant

ψ(r1, r2) =
1√
2

∣∣∣∣ψ1(r1) ψ2(r1)
ψ1(r2) ψ2(r2)

∣∣∣∣ . (4)

These correlations are the analogue of quantum entan-
glement in separated systems and are essential for quan-
tum information processing in non-separated systems.
The definition of fermionic entanglement using Slater
rank is generalized for mixed states ρ =

∑
i pi |ψ〉

ri
i 〈ψ|

ri
i ,

where ri denotes the the Slater rank of the pure state
|ψ〉rii . Mixed states can be characterized by their Slater
number which is the minimal Slater rank required to
generate them. By definition, the Slater number k =
min rmax, where rmax is the maximum Slater rank within
a decomposition, and the minimum is taken over all de-
compositions.

An entanglement criterion for states of two fermions
can be formulated in terms of the Von Neumann en-
tropy [10, 17, 18]

SvN(ρ1) = −Tr(ρ1 ln ρ1) = −
∑
j

λj lnλj , (5)

λj are eigenvalues of the single-particle reduced density
matrix ρ1. A pure state has Slater rank one iff SvN(ρ1) =
ln 2.
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For two-particle mixed ρ [19]

EvN(ρ) = SvN(ρ1)− SvN(ρ)− ln 2, (6)

is positive the state ρ is necessarily entangled. If a
fermionic state is pure, then EvN(ρ) = SvN(ρ1)− ln 2.

One can also use linear entropy SL(ρ1) = 1 − Trρ2
1

to quantify entanglement. A pure state has Slater rank
one iff SL(ρ1) = 1/2. In general, a pure state of n iden-
tical fermions is separable if and only if the purity of
the reduced density matrix ρ1 is equal to 1/n [19–21].
That is the state has Slater rank one iff Trρ2

1 = 1/n.
And if 1/d ≤ Trρ2

1 < 1/n then the state is entangled,
d = 2N ≥ n is the dimension of the single particle state
space.

In the case of two-particle fermionic mixed density ma-
trix ρ [19]

EL(ρ) = SL(ρ1)− SL(ρ)− 1

2
= Trρ2 − Trρ2

1 −
1

2
, (7)

is positive the state ρ is necessarily entangled. For pure
states we get the relation EL(ρ) = SL(ρ1)− 1/2.

B. Interacting electrons simulations

Let us consider the initial state, described by the wave
function

Ψ(r) = ψ(r)
(
α |↓↓〉+ β |↑↑〉+ γ(|↓↑〉+ |↑↓〉)/

√
2
)
/
√

3.

(8)
For each N the state is entangled or separable ac-
cording to the ψ(r), α, β and γ. For example,

states Ψ = (|02〉 − |20〉) |↑↑〉 /
√

2 and Ψ = (|02〉 −
|20〉) (|↓↓〉+ |↑↑〉+ |↓↑〉+ |↑↓〉) /2

√
2 are separable, be-

cause we get SL(ρ1) = 1/2, EL(ρ) = EvN(ρ) = 0 and
SvN(ρ1) = ln 2. The state Ψ = (|02〉−|20〉)(|↑↓〉+ |↓↑〉)/2
is entangled, because we get EL(ρ) = 1/4, SL(ρ1) =
EvN(ρ) = ln 2 and SvN(ρ1) = 2 ln 2.
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FIG. 3. Electron density in the i-th node vs. time. In these
simulations we put Ω = 0.3 and N = 8. The initial state is
(|04〉 − |40〉) |↑↑〉 /

√
2. Mutual repulsion between electrons is

taken into account. At time t ≈ 33 the charge density in the
0 node is less than one, it is about 0.94.

Fig. 3 shows charge density dynamics in a system of
8 quantum dots arranged in a closed ring. We can see
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FIG. 4. Von Neumann (blue) and linear (red) entropy. In
these simulations we put Ω = 0.3 and N = 8. The initial
fermionic state is (|04〉 − |40〉) |↑↑〉 /

√
2. At time t ≈ 30 there

is a sudden drop of entanglement with the local minimum
of entanglement at time t ≈ 33. At small t Von Neumann
entropy contains more information about fermionic entangle-
ment than linear entropy.

that there is no period of walks, only partial repetition.
We calculate EvN(ρ) and EL(ρ) using Eqs. (6) and (7)
respectively. An evolution of entanglement according to
entanglement sufficient conditions is shown in Fig. 4. It
can be seen that two electrons are initially separable, but
after a time they become entangled. This entanglement
is suddenly drops then there is a partial repetition of
the initial separable state at time t ≈ 33 (Fig. 3). Von
Neumann entropy (6) sufficient condition detects entan-
glement earlier, than linear entropy (7). It is worth not-
ing that Von Neumann entropy contains more informa-
tion about fermionic entanglement than linear entropy
according to the sufficient condition.

IV. DECOHERENCE

Let us turn to the description of electron quantum
walks in the presence of environment. One can mea-
sure the two qudit state using current detectors. It was
shown [9] that these detectors are the sources of white
(depolarizing) noise. We use the density matrix formal-
ism to describe the system of electrons in environment.
The evolution of the density matrix because of the white
noise is ρ̇ = −Γ(ρ − ρM ⊗ ρspin), Γ ≥ 0 is a relaxation
rate. Solving this equation we get the following:

ρ(t) = e−Γtρ(0) +
(
1− e−Γt

)
ρM ⊗ ρspin, (9)

with maximally mixed fermionic state matrix ρM ⊗ ρspin

of N2 dimension, where N is the number of nodes. The
spin part of the density matrix does not change during
the evolution, that is the spin part in Eq. (9) is ρspin =
Trcoordρ = Trcoordρ(0). The maximally mixed state of
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the coordinate part is

ρM =
1

N2 −N

N−1∑
j=1

j−1∑
i=0

(|i, j〉 − |j, i〉) (〈i, j| − 〈j, i|) .

(10)
The maximal mixed state of the coordinate part for 2

and 3 nodes are the following:

ρ
(2)
M =

1

2

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 ,

ρ
(3)
M =

1

6



0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0
0 −1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0


. (11)

The general expression for fermionic mixed state evo-
lution is

ρ(t) = e−iHt/~
(
e−Γtρ(0) +

(
1− e−Γt

)
ρM ⊗ ρspin

)
eiHt/~.

(12)
The density matrix ρ(t) is antisymmetric, because it de-
scribes two indistinguishable fermions. The same matrix
can be obtained by using an “ordinary” density matrix
ρ′ that describes distinguishable particles. To convert or-
dinary density matrix to antisymmetric one ρ = Aρ′A†,

A = N2−N√
2
ρM .

The decoherence described by Eq. (9) can lead to er-
rors in quantum information stored in two qudits. We
use the measure of decoherence D [22, 23] to quantify the
amount of errors. By definition, D = supρin ||ρout − ρin||,
where the operator norm of the matrix X is given by
||X|| = maxx∈spec(X) |x|, by spec(X) denote the spec-
trum of operator X [24]. D can be thought of as a prob-
ability of a false result obtained by current detectors. Al-
though the decoherence process is well studied for global
depolarizing noise (9), the difference between distinguish-
able particles and indistinguishable fermions is not clear.
The measure of decoherence for distinguishable particles
is

Ddist(N) =
(
1− e−Γt

)(
1− 1

N2

)
. (13)

We get the measure of decoherence for fermions

Dfermi(N) =
(
1− e−Γt

)(
1− 2

N2 −N

)
. (14)

Comparing Eqs. (13) and (14) we can see that depolar-
izing noise introduce less errors in fermionic system with
arbitrary number of nodes.

The main goal of this paper is to study fermionic en-
tanglement dynamics. To get the time evolution of entan-
glement we calculate EvN(ρ) from Eq. (6). Simulations
with different noise parameters are shown in Fig. 5.
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FIG. 5. Fermionic entanglement evolution. We put Ω = 0.3,
N = 8 and the initial state is (|04〉 − |40〉) |↑↑〉 /

√
2.

If the noise is strong enough, the entanglement between
two electrons will probably not appear, as it is shown in
Fig. 5 for Γ = 0.1. This situation differs from Γ = 0
case where entanglement is created because electrons re-
pel approaching each other. An intermediate case is de-
picted in Fig. 5 (Γ = 0.004). The decoherence parame-
ter Γ = 0.004 in not strong enough and entanglement is
created after a certain time, but then the process of de-
coherence starts to prevail over the process of fermionic
quantum walks. The entanglement is annihilated and
re-created and, finally, the noise will annihilate entangle-
ment.

V. CONCLUSION

In the paper we considered fermionic quantum walks.
Quantum walks is a more natural process comparing to
the gate creation. It was shown before that one can do
arbitrary quantum operations using only particles free
propagation [3]. One way to realize quantum walks algo-
rithms is to use silicon quantum dots that form a cycle
graph. We showed that using this structure one can en-
tangle electrons. The value of fermionic entanglement
was calculated using measures (6) and (7) that were in-
troduced recently [19]. We presented the decoherence of
fermionic state model in Section IV. The decoherence is
because of the depolarizing noise from detectors [9]. An-
alytical expressions 13 and 14 for measure of decoherence
were obtained and compared in the case of distinguish-
able and identical particles. But this noise can change
not only the coherence of the state, but also fermionic
entanglement. Fig. 5 shows computed entanglement dy-
namics for different noise levels. It can be seen that en-
tanglement behaves differently. Strong noise (Γ > 0.05)
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annihilate entanglement and week noise (Γ < 0.0001)
preserve entanglement after its creation due to electrons
repulsion. And there are intermediate cases: entangle-
ment is created for a certain time (Γ = 0.02) or anni-
hilated for a certain time (Γ = 0.004). One also could
make appropriate conditions in which entanglement will
be created and annihilated periodically during the quan-
tum walks. This dynamics will be obtained without any

additional manipulations with electrons and could find
several applications in quantum information science.
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