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Abstract

The simple genetic algorithm is proposed for the simulation of quantum many
body dynamics. It uses the selection of entangled quantum states and has the inbuilt
absolute decoherence that comes from the limitation of classical memory. It utilizes
the ”pre-quantum field” in the form of interacting between the different ”quantum
worlds”. It is shown how this selection model can be applied to the problem of
molecular association in chemical reactions.

1 Introduction and background

Algorithmic approach to quantum theory was proposed by the author in previous works
(see [1], [2]). It is based on our firm conviction that the effective classical algorithms with
expert estimations of a user represent the sufficient tool for the complete description of
the Nature on any levels including quantum theory. The key requirement in this approach
is the simplicity and the transparency of algorithms which are designed for the simulation
of main processes in the micro-world. The expected advantage of algorithmic approach
comes from its possibility to give the effective algorithms in cases when the standard
quantum theory gives no algorithms for many of such processes, and just here we can
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expect the advantage of algorithmic approach over the standard Copenhagen quantum
theory.

The first example can come from chemistry, where the application of quantum methods
has the long history. Nevertheless, quantum chemistry takes up stationary electronic
configurations, conformations of molecules and bound energies only, and there is no robust
chemical simulator. This situation is not random, because there is no full quantum
description of real dynamical processes. Shroedinger equation is not applicable even to
the simplest chemical reaction like the capture of a free electron by the Coulomb field of
a proton. Here the probability to obtain the electron in state 1s does not change in time
that makes the capture impossible. In the reality the emission of free photons always
plays the key role in the reactions of association of molecules. Just the emitted photons
take off the energy for the moving atoms that makes possible their joint in the molecule.
Unfortunately, quantum electrodynamics (QED) gives us no robust algorithms for such
processes as well. QED leads to the divergence of sums for amplitudes and there is no
completely satisfactory method to avoid it. Even if such a method is found QED is not
applicable to chemistry due to the more fundamental reason than the divergence of sums.
QED is the part of quantum theory and hence it inherits its basic drawback: the principal
absence of the integral description of quantum evolution. Unitary dynamics in quantum
theory is strictly separated from the measurements, and quantum theory factually is the
theory of unitary dynamics whereas for the full description of chemistry we manage with
the both these types of dynamics. The account of photons in chemical reactions has no
sense without some certain supposition about when the collapse of quantum state vector
happens. Just this supposition lies beyond the framework of quantum theory, and this
deprives the models of chemical reactions the status of exact theory.

The wish to describe chemistry leads us to the necessity to extend the methods of
quantum theory to the dynamics of many particle processes. My opinion is that such
an extension means the modification of the mathematical apparatus of quantum theory,
namely we must use algorithmic approach instead of analytic and algebraic methods (see
the previous discussion in [4]). Only this radical step makes possible to build the consistent
description of chemical reactions.

The reason that the robust description of chemical reactions must unavoidably have
quantum character lies in the fact that the essence of these reactions has quantum nature,
namely, it is based on the fundamental notion of entangled states. In this paper I represent
the model of chemistry where the basic element is quantum entanglement between the
particles participating in the reaction. In general sense, this gives the new argument
for algorithmic approach. In practical sense for those, who are looking for the robust
algorithms this gives the good starting point for elaboration of effective algorithms for
the simulating of chemical reactions.
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2 Method of collective behavior

The method of collective behavior represents the good alternative for the algebraic de-
scription of quantum one particle evolution. The discussion about the previous versions
of this approach (Bohm method) can be found in [4], cite11. The conventional matrix
algebra leads to the tremendous non effective usage of computational resources because of
the following reason. When calculating the resulting matrix of quantum unitary evolution
for time segment consisting of two parts: from t0 till t1 and from t1 till t2, we have to
multiply these matrices. The multiplication factually means that we trace on all possible
paths including those where no particle exists in order only to convince that there is no
particle there! Factually, the bulk of quantum interference has the destructive character
that is the reason of the non effective usage of classical computational time.

Instead of matrix algebra, we represent one particle not by its wave function, but as
the ensemble

S = {s1, s2, . . . , sm} (1)

of classical particles which are treated as the samples of the real quantum particle. We
call this ensemble the swarm. The main property of a swarm is that the density of samples
determined as

ρ(r̄) = lim
dx−→∞

Nr̄, dx

(dx)3
,

where Nr̄, dx is the total number of the samples in the cube with the side dx which center
is r̄. That is Born rule for quantum probability is guarantied for the natural treatment
of the probability, which does not use the observation. This natural treatment is based
on the classical urn scheme for the choice of sample that determines the position of the
real quantum particle. We then exclude the notion of observation from the kit of formal
tools, and treat observations as the special kind of quantum evolution. Fortunately, it is
possible to reduce quantum dynamics to the simple interactions between samples in the
swarm; this reduction factually includes decoherence and can be treated as the universal
mean for the integral description of quantum dynamics without the division to unitary
dynamics and measurements.

The correspondence between swarm representation of the quantum particle and its
standard representation through the wave function is given by the following formulas for
the density of samples and total impulse of the swarm in the small cube around the point
r: p̄(r) and the relative phase of wave function φ (Φ =

√
ρeiφ, so that the phase in the

point r0 is zero), where v̄ = p̄/ρ is the mean velocity of samples in this cube:

|Ψ(r)| =
√

ρ(r);

φ(r) =
∫

γ: r0−→r
k(dx)2v̄ · dγ,

v̄ = a(dx)−2grad φ(r),

(2)
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where · denotes scalar product of vectors. These formulas determine the passage from
swarm representation of quantum dynamics to the wave function and vice versa provided
the grain of spatial resolution dx is fixed. The quantum behavior of real particle can
be easily approximated with any desired accuracy by the swarm with simple rules of
behavior for its members. This rule is: the exchange of impulses between close samples.
It is proved in [2] that in this case the simple mechanism of impulse exchange ensures the
approximate coincidence of these two descriptions of quantum dynamics, within dx3 in
the determining of the wave function.

The rule of impulse exchange is not rule of classical physics though it conserves the
total impulse of the swarm. The interaction with the external field is classical for all
the samples. We do not take up the question about what does transmit the impulse
from one sample to the other and vice versa. It can be shown that this way gives us the
approximation of Shroedinger equation if we fix the grain dx of spatial resolution; the
intensity of impulse exchange must have the order (dx)−3. This peculiarity distinguishes
the method of collective behavior from the Bohm mechanics (see cite11). The last gives
the model for all dx at a time, but has no so transparent rule for microscopic behavior
of samples. Just the simple rule for microscopic behavior is needed for the extension of
the method of collective behavior to the many particle case. Let us now take up this
extension with the method of collective behavior with impulse exchange.

Let we are given a set of n quantum particles that we enumerate by integers: 1, 2, . . . , n.
We assume that the main act of evolution is the reaction of scattering when these particles
fly to each other simultaneously and can associate in some stable complex objects called
molecules. Factually, the more general picture of scattering takes place: initial particles
can consist of some more elementary particles, and in the reaction these more elementary
particles can regroup and form the products of the reactions, which consist of the same
elementary particles as the initial objects, but in the other configurations.

The simple example of such a reaction is the scattering of a proton on an atom of
hydrogen. Here the moving proton (proton number one) flies to the staying hydrogen
atom which in turn consists of an electron and proton number two. The possible products
are: a) isolated proton number one and hydrogen atom (no has happened), b) isolated
proton number two and hydrogen atom formed by the electron and the proton number
one (the flying proton tears the electron from the staying atom this reaction is called
the recharge), c) forming of the molecular ion of hydrogen (two protons glued by the
electron), and d) separate protons and electrons. The cases b) and c) represent the main
interest here because we then have the recombination of constituents (b) or association
of the new molecule (c).

We assume that the right description of the elementary reactions with n particles is
sufficient to build the actual model of the processes of any degree of complexity including
the description of the simple forms of living entities, like viruses and bacteria. Namely,
the easy generalization of abstract methods for scattering will give us the picture of the
behavior of very complex objects.

4



The main requirement to these types of models is that the required time and memory
for the simulation must grow not faster than linearly of the total number n of participating
particles which is treated as non dividable1 We also assume that our simulation must be
based on quantum mechanics, and the single essentially not conventional procedure in the
simulation is the simulation of decoherence.

The easiest algorithmic model of decoherence is called the absolute decoherence model.
It claims that decoherence comes as the reduction of quantum state

|Ψ〉 =
∑

j

λj|j〉 (3)

in the instant when the memory of the simulating computer cannot include the whole
notation of this state. The absolute model can be concretized as follows. We suppose
that the amplitudes in 3 cannot exceed some level ǫ > 0, called amplitude grain. If in the
unitary evolution some amplitude λj becomes less than ǫ, the corresponding summand
λj|〉 is merely excluded from the state 3, with the corresponding renormalization of state.
In the work [1] it was shown that this simple rule gives the Born rule for probability
to obtain the state |j〉 as the result of measurement of ‖psi〉 as pj = |λj |2. But this
is yet not the final form of simulating algorithm because the rule of small amplitude
reduction requires matrix algebra technique and thus cannot serve as the core of simulating
algorithms due to the non economical essence of matrix computations.

To obtain the robust scheme of simulating algorithm we must sequentially use the
method of collective behavior, where the algorithmic reduction of quantum state is the
inbuilt property. Let us consider the swarm representation of our n particles 1, 2, . . . , n,
where S1, S2, . . . , Sn are the swarms of samples corresponding to their states |Ψ1〉, |Ψ2〉, . . . , |Ψn〉.
If we consider the ensemble consisting of all these samples, it will be the representation of
non entangled state of the form |Ψ1〉

⊗ |Ψ2〉
⊗

. . .
⊗ |Ψn〉. But to represent the entangled

state of the form
Φ〉 =

∑

j1,j2,...,jn

λj1,j2,...,jn
|j1, j2, . . . , jn〉 (4)

we must introduce the new and crucial element to the method of collective behavior.
This is the bonds between the samples of the different swarms. The basic state ji can
be treated as the coordinate of particle i in the corresponding configuration space. The
representation of wave function in the form 4 means that there are bonds connecting
points j1, j2, . . . , jn in one cortege. The relative quantity of bonds of this form (their total
number divided to the total number of all bonds) is |λj1,j2,...,jn

|2.
We assume that the bonds connect not spatial points but the samples of real particles.

They have the form of corteges

s̄ = (s1, s2, . . . , sn) (5)

1We also assume that the observed chemical dynamics does not depend on the sub nuclear states, e.g.
the chemistry is determined by the electrons and nuclei. It is under question for very complex objects
but is likely true for not long time frames even for them.
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where for any j = 1, 2, . . . , n sj ∈ Sj. The wave function |Φ〉 is then represented
by the set S̄ of corteges s̄ so that for each j = 1, 2, . . . , sj ∈ Sj there exist exactly one
cortege of the form 5. Each cortege plays the role of the so called world in the many world
interpretation of quantum theory. We treat this cortege 5 as one probe representation
of the n particle system and all interactions goes inside the same cortege whereas the
real system state results from the interference of amplitudes corresponding to all cortege
which occur in the same spatial cell. We call S̄ the swarm for n particle system.

The density of the swarm S̄ is defined as

ρS̄(r1, r2, . . . , rn) = lim
dx−→∞

Nr1,r2,...,rn, dx

(dx)3n
, (6)

where Nr1,r2,...,rn, dx is the total number of cortege which occur in the 3n dimensional cube
with the side dx and the center r1, r2, . . . , rn.

If the wave function |Φ〉 is the tensor product of one particle wave functions:

Φ〉 =
n

⊗

i=1

|φi〉

The corresponding bonds can be obtained by random choice of samples sj ∈ Sj for each
j = 1, 2, . . . , n, forming one cortege s1, s2, . . . , sn. With this choice of cortege we obtain
that the density of swarm satisfy the Born condition which can be written for swarms in
the form

∑

r̄∈D

|〈r̄|Φ〉|2 =
Nr̄,S̄

N
(7)

where D ⊂ R3n, Nr̄,S̄ is the total number of corteges occur in the area D. But for the
entangled state |Φ〉 this choice of corteges for the kit S̄ will not give us the equality 7.
We thus must take 7 as the definition of the choice of corteges in S̄. But to define the
swarm we also need the velocities for all samples, namely, we need the generalization of
equation 2 to the case of n real quantum particles.

Let Ψ(r1, r2, . . . , rn) be the wave function of n particle system, Ψ = |Ψ|exp(iφ(r1, r2, . . . , rn)
be its Euler expansion. We denote by gradjφ(r1, r2, . . . , rn) the gradient of Ψ taken on the
coordinates of particle j, where j ∈ {1, 2, . . . , n} is the fixed integer. The generalization
of formulas 2 to the n particle case has the form

|Ψ(r̄)| =
√

ρ(r̄);

φ(r) =
∫

γ̄: r̄0−→r̄
k(dx)2v̄ · dγ,

v̄ = a(dx)−2 ¯grad φ(r̄),

(8)

where r̄ means r1, r2, . . . , rn, ¯grad means grad
1
, grad

2
, . . . , gradn, and γ̄ is the path in

3n dimensional space. The rules 8 is sufficient to determine the swarm given the wave
function, if we agree to join the samples into corteges independently of their velocities. The

6



microscopic mechanism of swarm dynamics takes the following form. Impulse exchange
between two corteges of samples: s̄ = (s1, s2, . . . , sj , . . . , sn) and s̄ = (s1, s2, . . . , sj, . . . , sn)
is impulse exchange between the two samples sj and sj provided s̄ and s̄ belong to the
same spatial cube in the configuration space R3n for n particles. With this definition the
reasoning from the paper [1] can be repeated straightforwardly and we obtain that this
microscopic mechanism of impulse exchange for n particles ensures the approximation of
n particle quantum dynamics within the accuracy of the order dx3n in the determining of
wave function.

The described method of collective behavior gives us the good framework for the
economical simulation of quantum evolution.

3 Genetic method of entangling

The method of collective behavior yet does not give us the algorithm for simulation of
quantum system dynamics, because the starting point of this method requires the wave
function description. To make the collective behavior method complete we must point how
to perform entangling, that is how to choose the initial corteges of samples. This choice
must guarantee the best approximation of wave function by corteges 8. We then can treat
one sample as a currier of amplitude grain in sense of [1], and the swarm dynamics will
thus give us the approximation of unitary dynamics and decoherence simultaneously. The
task of choosing corteges is thus the core of quantum simulation.

The experiments in the real simulation show that the task of choice of corteges can
hardly be solved by the one step procedure. I suggest the following simple genetic algo-
rithm for finding the corteges, which uses the sequential repetitions of dynamical scenarios
when the choice of initial conditions for each repetition will use the result of the previous
one.

We will describe the genetic entangling on the example of scattering of n quantum
particles. We start from the non entangled state of them where the particle j state is
determined by the wave function Ψj , or, in swarm representation, by the swarm Sj. At
the first scenario to determine the initial state of our swarm S̄ini we choose the corteges
s̄ at random. After the fixed small time of evolution ∆t of the swarm we obtain its final
state S̄fin. If we have a huge total number N of samples beforehand, in the swarms Sj, we
would obtain the good approximation of wave function by S̄fin, where the final quantity of
all samples will serve as the decoherence factor. The problem is to use the strictly limited
number N of the samples to simulate the real dynamics with the admissible accuracy.
Here in case of scattering under admissible accuracy we mean the right separation of
the products of reactions: for chemical reactions there is the list of possible products
with the corresponding probabilities depending on the initial state of reagents. With this
limitation of N we must charge the samples with the two roles: the first is to simulate
the unitary dynamics of the wave function, and the second is to simulate the decoherence
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resulting from the amplitude grain. We note that these two role are not in full agreement
with each other. The approximation of the wave function requires the small distance
‖ΨShoedinger − Ψswarm‖ whereas the decoherence resulting from the amplitude grain nulls
all states with the amplitude module less than ǫ that can give the big discrepancy with
the wave function in the unitary evolution especially when the dispersion of amplitude
distribution is large.

We thus have to choose corteges s̄ so that the distribution of samples among them be
the most economical for unitary dynamics as well as for decoherence on the short time
segment ∆t. Call the space R6n double configuration space for n particles. The sense of
it is that we will consider the pair of states: initial and final. For each cortege s̄ini in the
initial swarm there is one and only one cortege s̄fin which results from s̄ini in the swarm
evolution. We choose the division of double configuration space for n particles to the
cells of the form of cubes, and group the resulting pairs (s̄ini, s̄fin) of corteges into groups
G1,G2, . . . ,Gk so that each group consists of all pairs which occur in the same spatial
cube of the division. Let the numbers of elements Nj in these groups be ordered directly:
N1 ≥ N2 ≥ . . . ≥ Nk. We choose the first k1 < k groups and call the pairs in them right
pairs. The other pairs are called wrong. We are now ready to obtain the initial state for
the next repetition of scattering. We exclude the wrong pairs from S̄ and reorganize their
members to the other corteges by the rules of genetic algorithms. Here the application
of various genetic methods like the cross over is appropriate, when we group the former
members of wrong corteges likely to the grouping of right corteges. For thus created the
second version S̄2 of initial conditions we launch the repetition again and so on. It results
in the sequence of pairs

(S̄1

ini, S̄
1

fin), (S̄2

ini, S̄
2

fin), . . . (9)

where each pair (S̄j
ini, S̄

j
fin) represent the digest of the repetition number j. The passage

from one pair to the next consists of three steps: swarm evolution via impulse exchange,
selection and the replication of right pairs. The exchange of impulses between the different
corteges plays the role of mutations on the evolutionary programming. If we consider the
swarm S̄ as the world in the many world interpretation of quantum theory, the impulse
exchange between the two corteges means the interaction between the different worlds.
The chain 9 must be abrupt when the number of elements of the selected groups becomes
stable.

We represent the argument for that the method of state selection lies along the core
of standard quantum unitary dynamics for many particles. Let us turn to the Feynman
path integrals (see [6]) where the wave function Ψ in each time instant t is determined by
the following equation:

Ψ(t, r̄) =
∫

R3n

K(t, r̄, t1, r̄1)Ψ(t1, r̄1), (10)

where K is the kernel of our system, that can be treated as the amplitude careered by a
cortege, if we assume that the samples carrier complex numbers amplitudes instead of
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their velocities as in the collective behavior method. Amplitudes K careered by a cortege,
thus depend on the initial and the final position r̄1 and r̄, and must be then closed for the
corteges which initial and final spatial positions are closed. Let us estimate the deposit
to the probability |Ψ(t, r̄)|2 of two groups of corteges with l elements each: the first group
contains in the same group Gj, and the corteges from the second group have only the final
positions closed but the initial are different, and, for simplicity, randomly chosen. The
deposits of these two groups to the probability are approximately

d1 = |
l

∑

s=1

α|2 = k2|α|2, d2 = |
l

∑

s=1

αeiφs ≈ k|α|2

where the phases φs are distributed randomly. The last approximate equality follows
from the fact that for the uniform distribution of φs the medium of the distance of this
sum from zero must have the order square root of the module of a summand. Hence,
the deposit of the first group is prevailing. Returning to the samples in the collective
behavior, we note that the complex amplitudes here are substantiated by the velocities
of samples, and the deposit of minor groups Gj for j > k1 will be much smaller than
the deposit of the right samples taken in the same quantity, that legalizes the selection
procedure, if we assume that the wave functions are continuous.

We illustrate the action of the genetic algorithm of state selection on our example with
the association of protons in the molecular ion of hydrogen. We suppose that the initial
state of the first proton and the atom of hydrogen are close sufficiently to the forming of
molecular ion of hydrogen. We treat the electron not as the separate particle here, but
as the factor which creates the attracting potential between protons. If the first choice of
pairs (1 proton sample, 2 proton sample) is done such that many pairs were formed with
the distance between protons far from the distance r0 of stable molecular ion of hydrogen,
then the protons from these pairs will fly to far distance one from another, and hence this
pairs occur in the different groups. It results after several iterations in the growth of the
groups where the initial distance between protons is close to r0, and we obtain in the final
the prevailing quantity of pairs which form the molecular ion of hydrogen.

In case when the initial positions of the first proton and the hydrogen atom are far,
this scheme has to be extended. Here we must take into consideration also photons, which
are emitted by this system and thus decrease its energy. Photons can be included to the
scheme with quantum state selection as well. But the direct consideration of photons is
not necessary, because we can replace them by some kind of friction, and split the time
frame ∆t to the smaller segments so that in the last segment the positions of flying proton
and the target atom will be close enough to apply the selection procedure.

The simulation we have proposed touches the basic things in quantum mechanics. At
first it factually utilises the fundamental idea of many worlds (Everett). Each cortege
consisting of samples of the real particles represent the separate quantum world. The
different worlds interact with each other, and the selection process plays the role of judge in
this interaction. The interaction inself results from the mechanism of dynamical diffusion
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when the close corteges exchange their impulses on the fixed place j. This exchange
represents the exact form of the so called pre quantum fields considered in [3].

4 Conclusion

We propose the simple genetic algorithm for the simulation of association of atoms into
molecules, based on the method of collective behavior. This algorithm is scalable in
the sense that we can add new particles to the considered system and the construction
still remains valid. In particular, it admits the inclusion of photons, and the complex
molecules. The interesting peculiarity is that this algorithm can be reversed, the formal
inversion, when we treat the dissociation process, gives us the picture of splitting of the
molecule to the more simple molecules of atoms and we can estimate the probabilities of
the both processes even for large quantity of participating atoms.

The description of association and dissociation of molecule based on the method of
collective behavior is completely quantum and is based on Hilbert formalism. This tool
is scalable and can be applied to the complex chemical processes. In particular we can
expect that this approach is applicable to the explanation of the phenomenon of molecular
memory detected in experiments. The proposed method for the simulation of quantum
dynamics thus represents the kind of case technology in fundamental science.
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