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We present a quantum-like representation algorithm, QLRA, for probabilistic data obtained
in any domain of science. Quantum-like (QL) information representation is considered as in-
complete information representation. This approach is applied to QL-simulation of processing
of information by cognitive systems.

1. Introduction

We discuss the possibility to represent statistical data in the quantum-like (QL)
way – by complex probability amplitudes, cf. [1]–[3]. Such a QL-representation
provides the possibility to process data in complex Hilbert space and, hence, to use
the standard description of quantum information theory. We present quantum-like
representation algorithm (QLRA), which can be applied to statistical data obtained
in any domain – cognitive and social sciences, psychology, economy and even political
sceince. In our model QL-randomness appears not as irreducible randomness, but
as a consequence of obtaining or/and using incomplete information about a system.
We prefer to escape a rather heavy discussion on completeness of quantum physics,
see [4]–[10], cf. [11], [12]. It might be that the real physical quantum randomness is
really irreducible. Nevertheless, even in this case one might proceed in other domains
of science by using QLRA and hence by interpreting QL information as incomplete
information about a system. In this paper we consider in a more detail one special
application – QL modeling of brain’s functioning. The brain is modeled as a QL-
computer.

We present a contextualist statistical realistic model for quantum-like repre-
sentations in cognitive science and psychology [13], [14]. We apply this model to
describe cognitive experiments to check quantum-like structures of mental processes.
The crucial role is played by the interference of probabilities for mental observables.
Recently one such experiment based on recognition of images was performed, see
[13], [15]. This experiment confirmed our prediction on the quantum-like behavior of
mind. In our approach “quantumness of mind” has no direct relation to the fact that
the brain (as any physical body) is composed of quantum particles. We invented
a new terminology “quantum-like (QL) mind.” Cognitive QL-behavior is charac-
terized by a nonzero coefficient of interference λ (“coefficient of supplementarity”).
This coefficient can be found on the basis of statistical data. There are predicted not
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only cos θ-interference of probabilities, but also hyperbolic cosh θ-interference. The
latter interference was never observed for physical systems, but we could not exclude
this possibility for cognitive systems. We propose a model of brain functioning as a
QL-computer. We shall discuss the difference between quantum and QL-computers.

From the very beginning we emphasize that our approach has nothing to do
with quantum reductionism, cf. [17]–[20]. Of course, we do not claim that our ap-
proach implies that quantum physical reduction of mind is totally impossible. But
our approach could explain the main QL-feature of mind — interference of minds —
without reduction of mental processes to quantum physical processes. Regarding the
quantum logic approach we can say that our contextual statistical model is close
mathematically to some models of quantum logic [16], but interpretations of mathe-
matical formalisms are quite different. The crucial point is that in our probabilistic
model it is possible to combine realism with the main distinguishing features of
quantum probabilistic formalism such as interference of probabilities, Born’s rule,
complex probabilistic amplitudes, Hilbert state space, and representation of (realistic)
observables by operators.

2. Observational Contextual Statistical Model

A general statistical realistic model for observables based on the contextual viewpoint
to probability will be presented. It will be shown that classical as well as quantum
probabilistic models can be obtained as particular cases of our general contextual
model, the Växjö model.

This model is not reduced to the conventional, classical and quantum models.
In particular, it contains a new statistical model: a model with hyperbolic cosh-
interference that induces ”hyperbolic quantum mechanics” [13].

A physical, biological, social, mental, genetic, economic, or financial context C
is a complex of corresponding conditions. Contexts are fundamental elements of any
contextual statistical model. Thus construction of any model M should be started
with fixing the collection of contexts of this model. Denote the collection of contexts
by the symbol C (so the family of contexts C is determined by the model M under
consideration). In the mathematical formalism C is an abstract set (of “labels” of
contexts).

We remark that in some models it is possible to construct a set-theoretic repre-
sentation of contexts – as some family of subsets of a set Ω. For example, Ω can be the
set of all possible parameters (e.g., physical, or mental, or economic) of the model.
However, in general we do not assume the possibility to construct a set-theoretic
representation of contexts.

Another fundamental element of any contextual statistical model M is a set
of observables O : each observable a ∈ O can be measured under each complex of
conditions C ∈ C. For an observable a ∈ O, we denote the set of its possible values
(“spectrum”) by the symbol Xa.

We do not assume that all these observables can be measured simultaneously.
To simplify considerations, we shall consider only discrete observables and, moreover,
all concrete investigations will be performed for dichotomous observables.
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Axiom 1: For any observable a ∈ O and its value x ∈ Xa, there are defined
contexts, say Cx, corresponding to x-selections: if we perform a measurement of the
observable a under the complex of physical conditions Cx, then we obtain the value
a = x with probability 1. We assume that the set of contexts C contains Cx-selection
contexts for all observables a ∈ O and x ∈ Xa.

For example, let a be the observable corresponding to some question: a = + (the
answer “yes”) and a = − (the answer “no”). Then the C+-selection context is the
selection of those participants of the experiment who answering “yes” to this question;
in the same way we define the C−-selection context. By Axiom 1 these contexts are
well defined. We point out that in principle a participant of this experiment might
not want to reply at all to this question. By Axiom 1 such a possibility is excluded.
By the same axiom both C+ and C−-contexts belong to the system of contexts under
consideration.

Axiom 2: There are defined contextual (conditional) probabilities P(a = x|C)
for any context C ∈ C and any observable a ∈ O .

Thus, for any context C ∈ C and any observable a ∈ O , there is defined the
probability to observe the fixed value a = x under the complex of conditions C.

Especially important role will be played by probabilities:

pa|b(x|y) ≡ P(a = x|Cy), a, b ∈ O, x ∈ Xa, y ∈ Xb,

where Cy is the [b = y]-selection context. By axiom 2 for any context C ∈ C, there
is defined the set of probabilities:

{P(a = x|C) : a ∈ O}.

We complete this probabilistic data for the context C by contextual probabilities
with respect to the contexts Cy corresponding to the selections [b = y] for all ob-
servables b ∈ O. The corresponding collection of data D(O, C) consists of contextual
probabilities:

P(a = x|C),P(b = y|C),P(a = x|Cy),P(b = y|Cx), ...,

where a, b, ... ∈ O. Finally, we denote the family of probabilistic data D(O, C) for all
contexts C ∈ C by the symbol D(O, C)(≡ ∪C∈CD(O, C)).

Definition 1. (Växjö Model) An observational contextual statistical model of
reality is a triple

M = (C,O,D(O, C)) (2.1)

where C is a set of contexts and O is a set of observables which satisfy to axioms 1,2,
and D(O, C) is probabilistic data about contexts C obtained with the aid of observables
belonging O.

We call observables belonging the set O ≡ O(M) reference of observables. Inside
of a model M observables belonging to the set O give the only possible references
about a context C ∈ C.
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3. Contextual Model and Ignorance of Information

Probabilities P(b = y|C) are interpreted as contextual (conditional) probabilities. We
emphasize that we consider conditioning not with respect to events as it is typically
done in classical probability [21], but conditioning with respect to contexts – com-
plexes of (e.g., physical, biological, social, mental, genetic, economic, or financial)
conditions. This is the crucial point.

On the set of all events one can always introduce the structure of the Boolean
algebra (or more general σ-algebra). In particular, for any two events A and B their
set-theoretic intersection A ∩ B is well defined and it determines a new event: the
simultaneous occurrence of the events A and B.

In contract to such an event-conditioning picture, if one have two contexts, e.g.,
complexes of physical conditions C1 and C2 and if even it is possible to create the
set-theoretic representation of contexts (as some collections of physical parameters),
then, nevertheless, their set-theoretic intersection C1∩C2 (although it is well defined
mathematically) need not correspond to any physically meaningful context. Physical
contexts were taken just as examples. The same is valid for social, mental, economic,
genetic and any other type of contexts.

Therefore even if for some model M we can describe contexts in the set-theoretic
framework, there are no reasons to assume that the collection of all contexts C should
form a σ-algebra (Boolean algebra). This is the main difference from the classical
(noncontextual) probability theory [21].

One can consider the same problem from another perspective. Suppose that
we have some set of parameters Ω (e.g., physical, or social, or mental). We also
assume that contexts are represented by some subsets of Ω. We consider two levels
of description. At the first level a lot of information is available. There is a large
set of contexts, we can even assume that they form a σ-algebra of subsets F . We
call them the first level contexts. There is a large number of observables at the first
level, say the set of all possible random variables ξ : Ω → R (here R is the real line).
By introducing on F a probability measure P we obtain the classical Kolmogorov
probability model (Ω,F ,P), see [21]. This is the end of the classical story about the
probabilistic description of reality. Such a model is used e.g. in classical statistical
physics.

We point our that any Kolmogorov probability model induces a Växjö model in
such a way: a) contexts are given by all sets C ∈ F such that P(C) 6= 0; b) the set
of observables coincides with the set of all possible random variables; c) contextual
probabilities are defined as Kolmogorovian conditional probabilities, i.e., by the Bayes
formula: P(a = x|C) = P(ω ∈ C : a(ω) = x)/P(C). This is the Växjö model for the
first level of description.

Consider now the second level of description. Here we can obtain a non-
Kolmogorovian Växjö model. At this level only a part of information about the first
level Kolmogorovian model (Ω,F ,P) can be obtained through a special family of
observables O which correspond to a special subset of the set of all random variables
of the Kolmogorov model (Ω,F ,P) at the first level of description. Roughly speaking
not all contexts of the first level, F can be “visible” at the second level. There is
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no sufficiently many observables “to see” all contexts of the first level – elements of
the Kolmogorov σ-algebra F . Thus we should cut off this σ-algebra F and obtain
a smaller family, say C, of visible contexts. Thus some Växjö models (those per-
mitting a set-theoretic representation) can appear starting with the purely classical
Kolmogorov probabilistic framework, as a consequence of ignorance of information. If
not all information is available, so we cannot use the first level (classical) description,
then we, nevertheless, can proceed with the second level contextual description.

We shall see that starting with some Växjö models we can obtain the quantum-
like calculus of probabilities in the complex Hilbert space. Thus in the opposition
to a rather common opinion, we can derive a quantum-like description for ordinary
macroscopic systems as the results of using of an incomplete representation. This
opens great possibilities in application of quantum-like models outside the micro-
world. In particular, in cognitive science we need not consider composing of the
brain from quantum particles to come to the quantum-like model.

Example 1. (Firefly in the box) Let us consider a box which is divided into
four sub-boxes. These small boxes which are denoted by ω1, ω2, ω3, ω4 provides the
the first level of description. We consider a Kolmogorov probability space: Ω =
= {ω1, ω2, ω3, ω4}, the algebra of all finite subsets F of Ω and a probability measure
determined by probabilities P(ωj) = pj , where 0 < pj < 1, p1+...+p4 = 1.We remark
that in our interpretation it is more natural to consider elements of Ω as elementary
parameters, and not as elementary events (as it was done by Kolmogorov).

We consider two different disjoint partitions of the set Ω :
A1 = {ω1, ω2}, A2 = {ω3, ω4},
B1 = {ω1, ω4}, B1 = {ω2, ω3}.

We can obtain such partitions by dividing the box: a) into two equal parts by the
vertical line: the left-hand part gives A1 and the right-hand part A2; b) into two
equal parts by the horizontal line: the top part gives B1 and the bottom part B2.

We introduce two random variables corresponding to these partitions: ξa(ω) =
= xi, if ω ∈ Ai and ξb(ω) = yi ∈ if ω ∈ Bi. Suppose now that we are able to measure
only these two variables, denote the corresponding observables by the symbols a and
b. We project the Kolmogorov model under consideration to a non-Kolmogorovian
Växjö model by using the observables a and b – the second level of description.
At this level the set of observables O = {a, b} and the natural set of contexts C :
Ω, A1, A2, B1, B2, C1 = {ω1, ω3}, C1 = {ω2, ω4} and all unions of these sets. Here
“natural” has the meaning permitting a quantum-like representation (see further
considerations). Roughly speaking contexts of the second level of description should
be large enough to “be visible” with the aid of observables a and b.

Intersections of these sets need not belong to the system of contexts (nor comple-
ments of these sets). Thus the Boolean structure of the original first level description
disappeared, but, nevertheless, it is present in the latent form. Point-sets {ωj} are
not “visible” at this level of description. For example, the random variable

η(ωj) = γj , j = 1, ..., 4, γi 6= γj , i 6= j,

is not an observable at the second level.
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Such a model was discussed from positions of quantum logic, see, e.g., [22].
There can be provided a nice interpretation of these two levels of description. Let
us consider a firefly in the box. It can fly everywhere in this box. Its locations
are described by the uniform probability distribution P (on the σ-algebra of Borel
subsets of the box). This is the first level of description. Such a description can be
realized if the box were done from glass or if at every point of the box there were a
light detector. All Kolmogorov random variables can be considered as observables.

Now we consider the situation when there are only two possibilities to observe
the firefly in the box: 1) to open a small window at a point a which is located in such
a way that it is possible to determine only either the firefly is in the section A1 or in
the section A2 of the box; 2) to open a small window at a point b which is located in
such a way that it is possible to determine only either the firefly is in the section B1

or in the section B2 of the box. In the first case I can determine in which part, A1

or A2, the firefly is located. In the second case I also can only determine in which
part, B1 or B2, the firefly is located. But I am not able to look into both windows
simultaneously. In such a situation the observables a and b are the only source of
information about the firefly (reference observables). The Kolmogorov description is
meaningless (although it is incorporated in the model in the latent form). Can one
apply a quantum-like description, namely, represent contexts by complex probability
amplitudes? The answer is to be positive. The set of contexts that permit the
quantum-like representation consists of all subsets C such that P(Ai|C) > 0 and
P(Bi|C) > 0, i = 1, 2 (i.e., for sufficiently large contexts). We have seen that the
Boolean structure disappeared as a consequence of ignorance of information.

Finally, we emphasize again that the Växjö model is essentially more general.
The set-theoretic representation need not exist at all.

4. Boolean and quantum logic

Typically the absence of the Boolean structure on the set of quantum propositions
is considered as the violation of laws of classical logic, e.g., in quantum mechanics
[23]. In our approach classical logic is not violated, it is present in the latent form.
However, we are not able to use it, because we do not have complete information.
Thus quantum-like logic is a kind of projection of classical logic. The impossibility of
operation with complete information about a system is not always a disadvantages.
Processing of incomplete set of information has the evident advantage comparing
with “classical Boolean” complete information processing – the great saving of com-
puting resources and increasing of the speed of computation. However, the Boolean
structure cannot be violated in an arbitrary way, because in such a case we shall get
a chaotic computational process. There should be developed some calculus of con-
sistent ignorance by information. Quantum formalism provides one of such calculi.

Of course, there are no reasons to assume that processing of information through
ignoring of its essential part should be rigidly coupled to a special class of physical
systems, so called quantum systems. Therefore we prefer to speak about quantum-
like processing of information that may be performed by various kinds of physical and
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biological systems. In our approach quantum computer has advantages not because
it is based on a special class of physical systems (e.g., electrons or ions), but because
there is realized the consistent processing of incomplete information. We prefer to
use the terminology QL-computer by reserving the “quantum computer” for a special
class of QL-computers which are based on quantum physical systems.

One may speculate that some biological systems could develop in the process of
evolution the possibility to operate in a consistent way with incomplete information.
Such a QL-processing of information implies evident advantages. Hence, it might
play an important role in the process of the natural selection. It might be that
consciousness is a form of the QL-presentation of information. In such a way we
really came back to Whitehead’s analogy between quantum and conscious systems
[26].

5. Supplementary (“Incompatible”) Observables
in the Växjö Model

Nowadays the notion of incompatible (complementary) observables is rigidly cou-
pled to noncommutativity. In the conventional quantum formalism observables are
incompatible iff they are represented by noncommuting self-adjoint operators â and
b̂ : [â, b̂] 6= 0. As we see, the Växjö model is not from the very beginning coupled to a
representation of information in a Hilbert space. Our aim is to generate an analogue
(may be not direct) of the notion of incompatible (complementary) observables start-
ing not from the mathematical formalism of quantum mechanics, but on the basis of
the Växjö model, i.e., directly from statistical data.

Why do I dislike the conventional identification of incompatibility with non-
commutativity? The main reason is that typically the mathematical formalism of
quantum mechanics is identified with it as a physical theory. Therefore the quan-
tum incompatibility represented through noncommutativity is rigidly coupled to the
micro-world. (The only possibility to transfer quantum behavior to the macro-world
is to consider physical states of the Bose-Einstein condensate type.) We shall see
that some Växjö models can be represented as the conventional quantum model in
the complex Hilbert space. However, the Växjö model is essentially more general
than the quantum model. In particular, some Växjö models can be represented not
in the complex, but in hyperbolic Hilbert space (the Hilbert module over the two
dimensional Clifford algebra with the generator j : j2 = +1).

Another point is that the terminology – incompatibility – is misleading in our
approach. The quantum mechanical meaning of compatibility is the possibility to
measure two observables, a and b simultaneously. In such a case they are represented
by commuting operators. Consequently incompatibility implies the impossibility of
simultaneous measurement of a and b. In the Växjö model there is no such a thing as
fundamental impossibility of simultaneous measurement. We present the viewpoint
that quantum incompatibility is just a consequence of information supplementarity
of observables a and b. The information which is obtained via a measurement of, e.g.,
b can be non trivially updated by additional information which is contained in the
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result of a measurement of a. Roughly speaking if one knows a value of b, say b = y,
this does not imply knowing the fixed value of a and vice versa, see [14] for details.

We remark that it might be better to use the notion “complementary,” instead
of “supplementary.” However, the first one was already reserved by Nils Bohr for the
notion which very close to “incompatibility.” In any event Bohr’s complementarity
implies mutual exclusivity that was not the point of our considerations.

Supplementary processes take place not only in physical micro-systems. For
example, in the brain there are present supplementary mental processes. There-
fore the brain is a (macroscopic) QL-system. Similar supplementary processes take
place in economy and in particular at financial market. There one could also use
quantum-like descriptions [24]. But the essence of the quantum-like descriptions is
not the representation of information in the complex Hilbert space, but incomplete
(projection-type) representations of information. It seems that the Växjö model
provides a rather general description of such representations.

We introduce a notion of supplementary which will produce in some cases the
quantum-like representation of observables by noncommuting operators, but which
is not identical to incompatibility (in the sense of impossibility of simultaneous ob-
servations) nor complementarity (in the sense of mutual exclusivity).

Definition 2. Let a, b ∈ O. The observable a is said to be supplementary to the
observable b if

pa|b(x|y) 6= 0, (5.1)

for all x ∈ Xa, y ∈ Xb.

Let a = x1, x2 and b = y1, y2 be two dichotomous observables. In this case (5.1)
is equivalent to the condition:

pa|b(x|y) 6= 1, (5.2)

for all x ∈ Xa, y ∈ Xb. Thus by knowing the result b = y of the b-observation we are
not able to make the definite prediction about the result of the a-observation.

Suppose now that (5.2) is violated (i.e., a is not supplementary to b), for example:

pa|b(x1|y1) = 1, (5.3)

and, hence, pa|b(x2|y1) = 0. Here the result b = y1 determines the result a = x1.
In future we shall consider a special class of Växjö models in that the matrix

of transition probabilities Pa|b = (pa|b(xi|yj))
2
i,j=1 is double stochastic: pa|b(x1|y1) +

+ pa|b(x1|y2) = 1; pa|b(x2|y1) + pa|b(x2|y2) = 1. In such a case the condition (5.3)
implies that

pa|b(x2|y2) = 1, (5.4)

and, hence, pa|b(x1|y2) = 0. Thus also the result b = y2 determines the result a = x2.
We point out that for models with double stochastic matrix Pa|b =

= (pa|b(xi|yj))
2
i,j=1 the relation of supplementary is symmetric! In general it is not

the case. It can happen that a is supplementary to b : each a-measurement gives us
additional information updating information obtained in a preceding measurement
of b (for any result b = y). But b can be non-supplementary to a.
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Let us now come back to Example 1. The observables a and b are supplementary
in our meaning. Consider now the classical Kolmogorov model and suppose that we
are able to measure not only the random variables ξa and ξb – observables a and b,
but also the random variable η. We denote the corresponding observable by d. The
pairs of observables (d, a) and (d, b) are non-supplementary:

pa|d(x1|γi) = 0, i = 3, 4; pa|d(x2|γi) = 0, i = 1, 2,

and, hence,

pa|d(x1|γi) = 1, i = 1, 2; pa|d(x2|γi) = 1, i = 3, 4.

Thus if one knows , e.g., that d = γ1 then it is definitely that a = x1 and so on.

6. Test of Quantum-like Structure

We consider examples of cognitive contexts:
1). C can be some selection procedure that is used to select a special group

SC of people or animals. Such a context is represented by this group SC (so this
is an ensemble of cognitive systems). For example, we select a group Sprof.math. of
professors of mathematics (and then ask questions a or (and) b or give corresponding
tasks). We can select a group of people of some age. We can select a group of people
having a “special mental state”: for example, people in love or hungry people (and
then ask questions or give tasks).

2). C can be a learning procedure that is used to create some special group of
people or animals. For example, rats can be trained to react to special stimulus.

We can also consider social contexts. For example, social classes: proletariat-
context, bourgeois-context; or war-context, revolution-context, context of economic
depression, poverty-context, and so on. Thus our model can be used in social and
political sciences (and even in history). We can try to find quantum-like statistical
data in these sciences.

We describe a mental interference experiment.
Let a = x1, x2 and b = y1, y2 be two dichotomous mental observables: x1=yes,

x2=no, y1=yes, y2=no. We set X ≡ Xa = {x1, x2}, Y ≡ Xb = {y1, y2} (“spectra”
of observables a and b). Observables can be two different questions or two different
types of cognitive tasks. We use these two fixed reference observables for probabilistic
representation of cognitive contextual reality given by C.

We perform observations of a under the complex of cognitive conditions C :

pa(x) = the number of results a = x
the total number of observations

.

So pa(x) is the probability to get the result x for observation of the a under the
complex of cognitive conditions C. In the same way we find probabilities pb(y) for
the b-observation under the same cognitive context C.

As was supposed in axiom 1, cognitive contexts Cy can be created corresponding
to selections with respect to fixed values of the b-observable. The context Cy (for
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fixed y ∈ Y ) can be characterized in the following way. By measuring the b-observable
under the cognitive context Cy we shall obtain the answer b = y with probability one.
We perform now the a-measurements under cognitive contexts Cy for y = y1, y2, and
find the probabilities:

pa|b(x|y) =
number of the result a = x for context Cy

number of all observations for context Cy

where x ∈ X, y ∈ Y. For example, by using the ensemble approach to probability
we have that the probability pa|b(x1|y2) is obtained as the frequency of the answer
a = x1 = yes in the ensemble of cognitive system that have already answered b =
= y2 = no. Thus we first select a sub-ensemble of cognitive systems who replies no
to the b-question, Cb=no. Then we ask systems belonging to Cb=no the a-question.

It is assumed (and this is a very natural assumption) that a cognitive system is
“responsible for her (his) answers.” Suppose that a system τ has answered b = y2 =
= no. If we ask τ again the same question b we shall get the same answer b = y2 = no.
This is nothing else than the mental form of the von Neumann projection postulate:
the second measurement of the same observable, performed immediately after the
first one, will yield the same value of the observable).

Classical probability theory tells us that all these probabilities have to be con-
nected by the so called formula of total probability:

pa(x) = pb(y1)p
a|b(x|y1) + pb(y2)p

a|b(x|y2), x ∈ X.

However, if the theory is quantum-like, then we should obtain [13] the formula of
total probability with an interference term:

pa(x) = pb(y1)p
a|b(x|y1) + pb(y2)p

a|b(x|y2) (6.1)

+2λ(a = x|b, C)
√
pb(y1)pa|b(x|y1)pb(y2)pa|b(x|y2),

where the coefficient of supplementarity (the coefficient of interference) is given by
λ(a = x|b, C) =

pa(x) − pb(y1)p
a|b(x|y1) − pb(y2)p

a|b(x|y2)
2
√
pb(y1)pa|b(x|y1)pb(y2)pa|b(x|y2)

(6.2)

This formula holds true for supplementary observables. To prove its validity, it is
sufficient to put the expression for λ(a = x|b, C), see (6.2), into (6.1). In the quantum-
like statistical test for a cognitive context C we calculate

λ(a = x|b, C) =

pa(x) − pb(y1)p
a|b(x|y1) − pb(y2)p

a|b(x|y2)
2
√
pb(y1)pa|b(x|y1)pb(y2)pa|b(x|y2)

.

An empirical situation with λ(a = x|b, C) 6= 0 would yield evidence for quantum-like
behaviour of cognitive systems. In this case, starting with (experimentally calcu-
lated) coefficient of interference λ(a = x|b, C) we can proceed either to the conven-
tional Hilbert space formalism (if this coefficient is bounded by 1) or to so called
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hyperbolic Hilbert space formalism (if this coefficient is larger than 1). In the first
case the coefficient of interference can be represented in the trigonometric form λ(a =
= x|b, C) = cos θ(x), Here θ(x) ≡ θ(a = x|b, C) is the phase of the a-interference
between cognitive contexts C and Cy, y ∈ Y. In this case we have the conventional
formula of total probability with the interference term:

pa(x) = pb(y1)p
a|b(x|y1) + pb(y2)p

a|b(x|y2) (6.3)

+2 cos θ(x)
√
pb(y1)pa|b(x|y1)pb(y2)pa|b(x|y2).

In principle, it could be derived in the conventional Hilbert space formalism. But we
chosen the inverse way. Starting with (6.3) we could introduce a “mental wave func-
tion” ψ ≡ ψC (or pure quantum-like mental state) belonging to this Hilbert space.
We recall that in our approach a mental wave function ψ is just a representation
of a cognitive context C by a complex probability amplitude. The latter provides a
Hilbert representation of statistical data about context which can be obtained with
the help of two fixed observables (reference observables).

7. Wave Function Representation of Cognitive Contexts

Let C be a cognitive context. We consider only cognitive contexts with trigonometric
interference for supplementary mental observables a and b. The interference formula
of total probability (6.1) can be written in the following form: pa

C(x) =

∑

y∈Y

pb
C(y)pa|b(x|y) + 2 cos θC(x)

√
Πy∈Y pb

C(y)pa|b(x|y) (7.1)

By using the elementary formula: D = A+B+2
√
AB cos θ = |

√
A+eiθ

√
B|2, A,B >

0, we can represent the probability pb
C(x) as the square of the complex amplitude:

pa
C(x) = |ψC(x)|2 (7.2)

where

ψ(x) ≡ ψC(x) =
∑

y∈Y

√
pb

C(y)pa|b(x|y)eiξC(x|y). (7.3)

Here phases ξC(x|y) are such that ξC(x|y1)− ξC(x|y2) = θC(x). We denote the space
of functions: ψ : X → C by the symbol E = Φ(X,C). Since X = {x1, x2}, the E is
the two dimensional complex linear space. Dirac’s δ−functions {δ(x1−x), δ(x2−x)}
form the canonical basis in this space. For each ψ ∈ E we have ψ(x) = ψ(x1)δ(x1 −
− x) + ψ(x2)δ(x2 − x).

Denote by the symbol Ctr the set of all cognitive contexts having the trigono-
metric statistical behaviour (i.e., |λ| ≤ 1) with respect to mental observables a and b.
By using the representation (7.3) we construct the map J̃a|b : Ctr → Φ̃(X,C), where
Φ̃(X,C) is the space of equivalent classes of functions under the equivalence relation:
ϕ equivalent ψ iff ϕ = tψ, t ∈ C,|t| = 1. We point out that if the matrix of transition
probabilities for the reference observables is double stochastic, then a|b-representation
is equivalent to the b|a-representation. In general it is not the case.
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8. Quantum-like Processing of Information in Brain

The brain is a huge information system that contains millions of elementary mental
states . It could not “recognize” (or “feel”) all those states at each instant of time t.
Our fundamental hypothesis is that the brain is able to create the QL-representations
of mind. At each instant of time t the brain creates the QL-representation of its
mental context C based on two supplementary mental (self-)observables a and b.
Here a = (a1, ..., an) and b = (b1, ..., bn) can be very long vectors of compatible (non-
supplementary) dichotomous observables. The reference observables a and b can be
chosen (by the brain) in different ways at different instances of time. Such a change of
the reference observables is known in cognitive sciences as a change of representation.

A mental context C in the a|b− representation is described by the mental wave
function ψC . We can speculate that the brain has the ability to feel this mental field
as a distribution on the space X. This distribution is given by the norm-squared of
the mental wave function: |ψC(x)|2.

In such a model it might be supposed that the state of our consciousness is
represented by the mental wave function ψC . The crucial point is that in this model
consciousness is created through neglecting an essential volume of information con-
tained in subconsciousness. Of course, this is not just a random loss of information.
Information is selected through the algorithm of the probabilistic representation, see
(7.3): a mental context C is projected onto the complex probability amplitude ψC .

The (classical) mental state of sub-consciousness evolves with time C → C(t).
This dynamics induces dynamics of the mental wave function ψ(t) = ψC(t) in the
complex Hilbert space.

Further development of our approach (which we are not able to present here)
induces the following model of brain’s functioning [25]:

The brain is able to create the QL-representation of mental contexts, C → ψC

(by using the algorithm based on the formula of total probability with interference).

9. Brain as Quantum-like Computer

The ability of the brain to create the QL-representation of mental contexts induces
functioning of the brain as a quantum-like computer.

The brain performs computation-thinking by using algorithms of quantum com-
puting in the complex Hilbert space of mental QL-states.

We emphasize that in our approach the brain is not quantum computer, but a
QL-computer. On one hand, a QL-computer works totally in accordance with the
mathematical theory of quantum computations (so by using quantum algorithms).
On the other hand, it is not based on superposition of individual mental states. The
complex amplitude ψC representing a mental context C is a special probabilistic rep-
resentation of information states of the huge neuronal ensemble. In particular, the
brain is a macroscopic QL-computer. Thus the QL-parallelism (in the opposite to
conventional quantum parallelism) has a natural realistic base. This is real paral-
lelism in the working of millions of neurons. The crucial point is the way in which this
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classical parallelism is projected onto dynamics of QL-states. The QL-brain is able to
solve NP -problems. But there is nothing mysterious in this ability: an exponentially
increasing number of operations is performed through involving of an exponentially
increasing number of neurons.

We point out that by coupling QL-parallelism to working of neurons we started
to present a particular ontic model for QL-computations. We shall discuss it in
more detail. Observables a and b are self-observations of the brain. They can be
represented as functions of the internal state of brain ω. Here ω is a parameter of
huge dimension describing states of all neurons in the brain: ω = (ω1, ω2, ..., ωN ) :

a = a(ω), b = b(ω).

The brain is not interested in concrete values of the reference observables at fixed
instances of time. The brain finds the contextual probability distributions pa

C(x)
and pb

C(y) and creates the mental QL-state ψC(x), see the QL-representation algo-
rithm (7.3). Then it works with the mental wave function ψC(x) by using algorithms
of quantum computing.

Conclusion: We presented a consistent approach to QL-information represen-
tation as incomplete information representation.
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Quantum computation has attracted much attention since it was shown by Shor and Grover the 

possibility to implement quantum algorithms able to realize, respectively, factoring and searching in a 

faster way than any other known classical algorithm. In particular, it is possible to use Grover’s 

algorithm, taking profit of its ability to find a specific value in an unordered database, to find, for 

example, the zero of a logical function or the minimal or maximal value in a database. Here we show 

quantum algorithms to solve those cited problems. The solution requires the use of a quantum bit string 

comparator. This quantum circuit compares two quantum states and identifies if they are equal or, 

otherwise, which of them is the largest. Moreover, we also show the quantum bit string comparator 

allow us to implement conditional statements in quantum computation, a fundamental structure for 

designing of algorithms.  
 

 

 

1.  Introduction 
 

The Grover’s quantum search algorithm is a celebrated result in quantum computation 

that proves that quantum information properties (superposition) can improve the speedup of 

finding a specific value within an unordered database. In this case, no technique using data 

structures can be used and only sequential tentative can be realized. Computationally, the 

quantum search is proved to get in average O(N
1/2

) operations (in comparison with the O(N) 

classical operations), which indicates a quadratic speed-up [1–3]. Even though this 

improvement can be considered minor than other quantum algorithms, Shor [4] and Deutsch-

Jozsa[5] algorithms are exponentially better than their classical counterparts, the fact is that 

searching is fundamental in computer science having a large amount of applications. In 

addition, no classical algorithm can be more efficient than Grover algorithm, that is, the 

quantum search algorithm is as efficient as the best search algorithm could be. The basic reason 

that allows this performance is the smart use of the quantum superposition which means that all 

states can be processed at once (in contrast with the combinatory explosion of the classical 

alternatives). Basically, during the processing, the database, initially an equally weighted 

superposition of all possible states, converges to a state that can also be a superposition, but 
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containing only the states that are solutions of the problem, named marked states. There are 

several works on variations of Grover’s algorithm [6,7], entanglement measures based on the 

Grover’ algorithm [8,9] and implementation of Grover’s algorithm [10,11]. Here, our goal is to 

show how to solve some interesting mathematical problems using the Grover’s algorithm with 

an oracle based in a quantum circuit that compares two quantum states, representing binary 

strings, and identifies if they are equal or not and, in this last case, which of them is the largest 

(or the lowest). The circuit that makes the comparison is named quantum bit string comparator, 

QBSC. Furthermore, we show how to use the QBSC to construct quantum algorithms that 

employ conditional statements.  

 

2. Quantum circuits for the quantum bit string comparator 
 

Given two n-partite of qubits quantum states |a〉|b〉 the quantum bit string comparator is a 

unitary evolution UCMP that works as shown in (1) 

 

0 0 0
m

CMP
U a b a b x yψ

⊗
= . 

 

In (1) there are m+2 ancillas at the input, |ψ〉 is a m qubit output state that has not important 

information and the last two qubits carry the comparison information. For example, if a=b then 

x=y=0, if a>b then x=1 and y=0, and if a<b then x=0 and y=1. The evolution shown in (1) can 

be realized using the quantum circuit shown in Fig. 1 (for three qubits strings). It is able to 

compare two binary strings (having the same number of bits) identifying, by the measurement 

of two qubits, if they are equal or, if they are different, which of them is the largest (or the 

lowest).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Quantum circuit for comparison of two strings of three qubits: |a〉=|a1〉|a2〉|a3〉 and |b〉=|b1〉|b2〉|b3〉 
 

The quantum circuit proposed makes the comparison of two strings of three qubits, but 

the generalization to any number of qubits is straightforward. Basically, the quantum circuit 

compares the strings bit-to-bit from the left (most significant bit) to the right (less significant 

bit). In a measurement of the outputs (O1 and O2), if O1=1 and O2=0 then a>b; if O1=0 and 

(1) 
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O2=1 then a<b; at last, if O1=0 and O2=0 then a=b. Initially, the comparison between the first 

bit of each string is dominant, that is, if they are different, then the outputs will be O1=a1 and 

O2=b1. If they are equal (a1=b1) the comparison between the second bit of each string will be 

dominant, that is, if they are different, then the outputs will be O1=a2 and O2=b2. If the second 

bits are also equal, the comparison between the third bits of each string will be dominant and so 

on. In the circuit of Fig. 1 the transfer of dominion from one position of the string to the next is 

realized by the Toffoli gate C1 (activated in zero) and the Toffoli gates C2 and C3. Obviously, 

only the less significant bit does not have the dominion transfer circuit. The following 

examples, shown in Table 1, will make clear the functioning of the circuit (for simplicity it will 

be considered the comparison of two states of two qubits, but the result is directly generalized 

for any number of qubits). 

 
Table 1. Examples of the output of the quantum bit string comparator for two strings of two qubits at 

the inputs. 

 
 

 

 

 

 

 

 

 

 

 

In Table 1, the number inside the parenthesis besides the qubit means the probability of the 

output to be that qubit. For example, comparing |a〉=|11〉 with |b〉=α|01〉+β|11〉, with probability 

|α|
2
 a>b and, hence, |O1O2〉=|10〉. On the other hand, with probability |β|

2
 a=b and, hence, 

|O1O2〉=|00〉. Hence, in this case, the output state is |O1O2〉=(α|1〉1+β|0〉1)|0〉2. Another quantum 

circuit for the QBSC, based on subtractions, named NKO, can be as shown in Fig. 2 [12]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Quantum circuit for comparison of two strings of qubits using subtractions 
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In order to compare the quantum circuits shown in Figs. 1 and 2, we realized a 

complexity analysis. Since the construction of any quantum circuit can be done using single 

qubit gates (Sq) and CNOT gates (Cn), the cost of the circuits QBSC and NKO is calculated 

based on the unitary cost of those universal gates. The unitary costs are defined by: 1) Cost of 

Sq = 1u. 2) Cost of Cn = 1d. For example, the Swap and Toffoli gates have the following costs: 

• The Swap (Sw) gate can be constructed using three CNOT gates, hence, it costs 3d; 

• The Toffoli (Tof) gate can be constructed without ancilla [13] as shown in Fig. 3. It costs 

Three Cn, two Sw and four Sq, then, it costs 9d+4u. 

 

Figure 3. Toffoli gate implemented using only single-qubit gates and CNOT gates, without ancillas. 
 

Thus, the final cost to construct a n-qubit QBSC is presented in Table 2. 

 
Table 2. Construction cost of QBSC circuit. 

 

Gate Components Unitary Cost Quantity 

Uc 2 Tof + 2 Sw + 4 Pu 24d+12u n 

C1 1 Tof + 4 Pu 9d+8u n-1 

C2 8 Sw + 1 Tof 33d+4u n-1 

C3 8 Sw + 1 Tof 33d+4u n-1 
 

The total n-qubit QBSC cost is [99(n-1)+24] CNOTs and [28(n-1)+12] single-qubit gates.  

 

To realize the NKO complexity analysis, we assume that the quantum gate to verify the 

equality (Eq) is constructed using Swap gates to order the qubits and one MCNOT gate with n-

control qubits. The two low cost way to implement the MCNOT with n-control qubits [14] are 

shown in Table 3 with their respective costs. 

 
Table 3. Cost to implement a MCNOT gate with n-control qubits. 

 

Gate Ancilla qubits Number of Toffolis Total cost 

MCNOT1 1 32n-96 288n·d-864d+128n·u-384u 

MCNOT2 n-2 16n-32 144n·d-288d+64n·u-128u 
 

One can construct the NKO circuit using MCNOT1 or MCNOT2. The construction cost of the 

NKO components are presented in Table 4. 

 
Table 4. Cost to implement a NKO circuit 

 

Gate Components Unitary cost Quantity 

Us 2 Sw + 2 Cn + 2 Tof 17d+4u n 

Eq1 n
2
 Sw + 2n Pu + McN1 3n

2
d+288n·d-864d+130n·u-384u 1 

Eq2 n
2
 Sw + 2n Pu + McN2 3n

2
d +144n·d-288d+66n·u-128u 1 
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Using Table 3, we see that NKO1 (NKO with Eq1, that uses MCNOT1) has total cost of 

[3n
2
+305n-864] CNOTs and [134n-384] single-qubit gates. The NKO2 (NKO with Eq2, that 

uses MCNOT2) has total cost of [3n
2
 +161n-288] CNOTs and [70n-128] single-qubit gates. 

Therefore, the creation of NKO circuit requires more resources than the creation of QBSC 

circuit. This happen because of the MCNOT used by NKO. The Figures 4 and 5 show, 

respectively, the graphics of the number of CNOT gates and single qubit gates required by 

QBSC and KNO in order to build a n-qubit comparison quantum circuit. 
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Figure 4. Number of CNOTs versus number of qubits for QBSC, NKO1 and KNO2. 
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Figure 5. Number of single-qubit gates versus number of qubits for QBSC, NKO1 and KNO2. 

 

Another point to be considered is the number of ancillas needed. For the QBSC are 

necessary 3n-1, as can be calculated observing Fig. 1. The NKO1 needs n+3 ancillas. 

Observing Fig. 2 one counts n+2, the last one comes from the implementation of the MCNOT 

and it is not shown in Fig. 2. Finally, the NKO2 uses 2n ancillas. 

The last parameter to be considered is the degree of parallelism, that is, how compact 

the comparators can be constructed. The larger the number of gates that can be simultaneously 

used the faster is the program execution. In QBSC, the comparison between the pairs of qubits 

can be parallelized, that is, every gates Uc and C1 can be processed at the same time.  
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2. Applications of the quantum bit string comparator as an oracle in Grover’s 

algorithm  
 

 

 There are several important applications of the comparison of binary strings in quantum 

computation. Let us firstly discuss the use of the QBSC as an oracle in the Grover’s quantum 

search algorithm. An example of 4 qubits is shown in Fig. 6, but a generalization for any 

number of qubits is straightforward. 
 

 

For the circuit shown in Fig. 6, the task is to search in the database words of four bits larger 

than “0111”. This is clearly a typical case of multiple marked states and, hence, the output of 

Grover’s algorithm will be a superposition of the all possible solutions. The reference state 

|0111〉 works as string |a〉 while the database is |b〉. If the initial state of Grover’s algorithm is 

( )∑
=

15

0
41

i
i  then the output state will be: 

 

 

( )
22

15141312111098 +++++++

 

 

where the decimal representation has been used for simplification. If instead of search for states 

larger than |0111〉 one was looking for states lower than |0111〉, then O2 would be used instead 

of O1 (the reference is |a〉). Let us now suppose that the goal is to find the minimal value in the 

database. In order to find the minimal value the quantum circuit shown in Fig. 4 has to be used 

to activate the lowest CNOT of Grover’s quantum circuit. 

Using the circuit of Fig. 7, the oracle will recognize strings lower or equal than the 

reference. The algorithm to find the minimum is as follows [15]: Initially, one value of the 

database is randomly chosen. This value will be used for comparison (string |a〉). The algorithm 

runs and, at end, the result of the measurement will be one of the members of the database 

lower or equal than the initial value used. The result of the measurement will now be used as 

the new value to be compared. The process is repeated till the result of the measurement does 

not change anymore. If one is looking for the minimal of a function f, represented by the 
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Figure 6 - QBSC circuit as an oracle in a Grover search algorithm of four qubits. 

H- Hadamard gate. M – Measurer.  
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unitary evolution Uf, then the quantum circuit shown in Fig. 8 represents the complete oracle 

circuit. 
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Figure 8. Oracle circuit with QBSC for finding the minimal value of the function f. 
 

In Fig. 8, |x〉 is the database, |y〉 is the present “minimal value” that works as reference and the 

operation Uf acts in the following way: Uf|x〉|0
⊗n
〉=|x〉|f(x)〉. 

 Another interesting application is the problem of inverting a function, that is, given y what is 

the x such that y=f(x). The unitary transformation Uf represents the function whose argument 

one wishes to find. In order to solve this problem, almost the same quantum circuit of Fig. 8 

can be used, the difference is the Tofolli gate, that now has to be activated only when O1=O2=0 

as shown in Fig. 9.  
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Figure 9. Oracle circuit with QBSC used to invert the function f. 
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Figure 7. Control of the lowest CNOT of Grover’s quantum circuit in order to find the minimal 

value in a database using the quantum comparator circuit as oracle.   
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y α+y β− y

y α+y β− y

y α+y β− y

 

Given a y, the oracle in Fig. 9 marks only those states |x〉 the obeys the condition f(x)=y. In 

particular, if |y〉=|0
⊗n

〉, then the oracle will recognize only the zero of the function f.  

 Another important question is the search of intervals. For example, given the constants y, 

α and β, what are the values of x for which y-β<f(x)<y+α? The oracle to be used in the solution 

of this kind of problem is shown in Fig. 10. 
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Figure 10. Oracle with QBSC for searching of the values of x such y-β< f(x) < y+α. 

In the quantum circuit in Fig. 10, the +α and -β gates, whose ancillas are not shown, realize, 

respectively, the sum of α and subtraction of β. In Fig. 11.a-c it is shown for a fictitious 

example the change of the sign of the amplitudes before the first QBSC (a), after the first 

QBSC (b) and after the second QBSC (c). 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

Figure 11. Change of the signs of the amplitudes during operation of the oracle shown in Fig. 10.  
 

 

 

3. Conditional statements in quantum computation 
 

 In general, the QBSC expands the notion of controlled operation. Using the QBSC, 

controlled operations of the type U
C
, where C is a conditional statement, can be constructed. In 

this case, the operator U is applied to a set of qubits only if the conditional statement C is true. 
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This last can be anyone of the type a>b, a<b, a≥b, a≤b, a=b and a≠b. For instance, using again 

the Grover’s algorithm as scenario, we can implement the following piece of software: If 

|a〉>|b〉 then search for solution S1, otherwise, search for solution S2. For an oracle based on n-

CNOTS, the quantum circuit for a four bit problem is as shown in Fig. 12. 
 

 
 

In Fig. 12, if a>b the Grover algorithm will search for |0011〉, otherwise the algorithm will 

search for |1100〉.  
 

 

4. Conclusions 
 

 The quantum bit string comparator enables the implementation of quantum algorithms using 

conditional statements, a fundamental structure for designing of algorithms. This enlarges the 

number of applications where quantum algorithms can be used and, at the same time, it brings 

close to quantum programmers successful techniques used in classical computation based on 

comparisons. Furthermore, the use of the QBSC with Grover algorithm gives us power to solve 

some mathematical problems of the type presented in this work, as well open the possibility to 

create quantum algorithm with very specific tasks. For example, constructing a database 

composed only of prime numbers it is possible, using the QBSC and Grover algorithm, to 

search for an even number that does not satisfy Goldbach’s conjecture (all even number larger 

than two can be written as the sum of two prime numbers).  
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The simple genetic algorithm is proposed for the simulation of quantum many body dynamics.
It uses the selection of entangled quantum states and has the inbuilt absolute decoherence
that comes from the limitation of classical memory. It is shown how this selection model can
be applied to the problem of molecular association in chemical reactions.

1. Introduction and background

Algorithmic approach to quantum theory was proposed by the author in previous
works (see [3], [4]). It is based on our firm conviction that the effective classical
algorithms with expert estimations of a user represent the sufficient tool for the
complete description of the Nature on any levels including quantum theory. The key
requirement in this approach is the simplicity and the transparency of algorithms
which are designed for the simulation of main processes in the micro-world. The
expected advantage of algorithmic approach comes from its possibility to give the
effective algorithms in cases when the standard quantum theory gives no algorithms
for many of such processes, and just here we can expect the advantage of algorithmic
approach over the standard Copenhagen quantum theory.

The first example can come from chemistry, where the application of quantum
methods has the long history. Nevertheless, quantum chemistry takes up stationary
electronic configurations, conformations of molecules and bound energies only, and
there is no robust chemical simulator. This situation is not random, because there is
no full quantum description of real dynamical processes. Shredinger equation is not
applicable even to the simplest chemical reaction like the capture of a free electron
by the Coulomb field of a proton. Here the probability to obtain the electron in state
1s does not change in time that makes the capture impossible. In the reality the
emission of free photons always plays the key role in the reactions of association of
molecules. Just the emitted photons take off the energy for the moving atoms that
makes possible their joint in the molecule. Unfortunately, quantum electrodynamics
(QED) gives us no robust algorithms for such processes as well. QED leads to the
divergence of sums for amplitudes and there is no completely satisfactory method to

∗The work is supported by Fond of NIX Computer Company grant # F793/8-05, INTAS grant
04-77-7289 and Russian Foundation for Basic Research grant 06-01-00494-a.
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avoid it. Even if such a method is found QED is not applicable to chemistry due
to the more fundamental reason than the divergence of sums. QED is the part of
quantum theory and hence it inherits its basic drawback: the principal absence of
the integral description of quantum evolution. Unitary dynamics in quantum theory
is strictly separated from the measurements, and quantum theory factually is the
theory of unitary dynamics whereas for the full description of chemistry we manage
with the both these types of dynamics. The account of photons in chemical reactions
has no sense without some certain supposition about when the collapse of quantum
state vector happens. Just this supposition lies beyond the framework of quantum
theory, and this deprives the models of chemical reactions the status of exact theory.

The wish to describe chemistry leads us to the necessity to extend the methods
of quantum theory to the dynamics of many particle processes. My opinion is that
such an extension means the modification of the mathematical apparatus of quantum
theory, namely we must use algorithmic approach instead of analytic and algebraic
methods (see the previous discussion in [7]). Only this radical step makes possible
to build the consistent description of chemical reactions.

The reason that the robust description of chemical reactions must unavoidably
have quantum character lies in the fact that the essence of these reactions has quan-
tum nature, namely, it is based on the fundamental notion of entangled states. In
this paper I represent the model of chemistry where the basic element is quantum
entanglement between the particles participating in the reaction. In general sense,
this gives the new argument for algorithmic approach. In practical sense for those,
who are looking for the robust algorithms this gives the good starting point for
elaboration of effective algorithms for the simulating of chemical reactions.

2. Method of collective behavior

The method of collective behavior represents the good alternative for the algebraic
description of quantum one particle evolution. The discussion about the previous
versions of this approach (Bohm method) can be found in [7], [11]. The conven-
tional matrix algebra leads to the tremendous non effective usage of computational
resources.

the computational difficulties arise already for one quantum particle. Let its con-
figuration space be divided to N elements. It means that the space of quantum states
has the dimensionality N . If we apply the matrix algebra in any form for computa-
tions we force the computer to process all trajectories of the system passing through
all N basic states. In the simplest case it is expressed in the multiplication of unitary
matrices of the time evolution. The mean value of the module of matrix element is
1/

√
N . If all the interference arising in the evolution of the system is constructive

we would obtain the resulting matrix which coefficients are about N 1/(
√
N
√
N = 1,

whereas they must be of the order 1/
√
N . It means that the bulk of interference

is destructive and the huge portion of the computational recourse is spent to verify
only that there is no particle in the considered point. The computational methods of
matrix algebra when applied to quantum mechanics a priori require the no efficient
expenses of the computational resources. Such methods factually realize Ryman
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scheme of integration for Shredinger equation that is based on the division of the
configuration space to finite elements.

We propose the alternative approach corresponding to Lebeg scheme of integra-
tion. We take as the basic elements the point wise samples of the considered particle
so that each sample will represent the whole particle in one point. The total number
of samples must not be large and its dynamics must be the good approximation of
the quantum dynamics of the initial particle. Our main aim is to avoid the huge non
effective expenses of the computational resources featured to matrix algebra. After
the developing of this technique for one quantum particle we could hope to apply
this method for many quantum particles as well.

This method of representation of quantum particle by its samples we call the
method of collective behavior. It realizes the requirement of strict economy of the
computational resources, which is the basic principle of algorithmic approach. The
requirement of maximal economy of the computational resources is not only esthetic.
This requirement allows to build the models in which decoherence is inbuilt feature of
the model but not an axiom as in the Copenhagen quantum mechanics. In is shown
in [3] how this requirement gives us the classical urn scheme for Born distribution of
probability for the results of quantum measurements.

Here we give the interpretation of the dynamics of one quantum particle by
means of collective behavior. The cost that will be paid for the economy of the com-
putational resources is the necessity to build the algorithm by means of mechanism
of interaction between the samples of particle, not by the differential equations. For
the method of collective behavior it is impossible to build the adequate differential
equation. However, this situation has the positive sides as well, beyond economical
computations. The model of quantum dynamics becomes nearer to classical than in
the standard approach that makes possible its visual representation.

The proposed approach is the direct generalization of diffusion Monte Carlo
method to the case of the time dependent solution of Shredinger equation. The known
fact that DMC gives the most exact approximation of stationary wave functions
among all computational methods inspires optimism in the practical application of
the method of collective behavior for more complex problems.

3. Dynamical diffusion swarm

Here we define the main instrument of quantum simulation: dynamical diffusion
swarm. This object generalizes two well known notions: the ensemble of point wise
particles from DMC method, and the ensemble of particles with the interaction in-
duced by some classical Hamiltonian H(r, p). Particles from DMC have no speeds
and they are designed for the computation of stationary states for which they give
the best approximation. The density of particles ρ for the ensembles with classical
Hamiltonian depends on the coordinate r and on the impulse p; it obeys Liouvill
equation

dρ

dt
= −{ρ,H}.
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The behavior determined by this equation cannot simulate quantum evolution with
the admissible accuracy because it does not give principle quantum phenomena like
Rabi oscillation or quantum spectra. Hence, for the simulation of quantum mechanics
we must admit some elements of behavior of the samples which do not follow from
the classical physics.

The next analog of the dynamical diffusion swarm is Calder Legett model for
the partial decoherence of quantum particle in which the particle is considered as
interacting with the bath of harmonic oscillators. This interaction gives some random
speed to the particle. However, such a model is based on standard formalism whereas
the dynamical diffusion swarm is designed to replace this formalism.

Why the dynamical diffusion swarm is better than the immediate solution of
Shredinger equation ? In this solution we factually use Riemann schem of integration.
We must perform computations of the wave function on the whole configuration space
independently on the degree of constructiveness of the interference. Here on the
main part of the space where the interference is destructive and the wave function
factually equals zero we are forced to spend the computational recourse only to verify
this. The dynamical diffusion swarm, in contrast, realizes the more general Lebeg
scheme og integration. In this case the diffusion dynamics results in that the samples
will concentrate in the areas of constructive interference themselves and we avoid
the non effective expenses of the computational resources. This is the fundamental
advantage of the diffusion dynamics. We will see that the cost for this is the non
uniform dependence of diffusion rate on the grain of the length δx in contrast to the
standard diffusion where the rate is uniform.

We proceed with the definitions. We call the swarm the finite set S consisting
n identical point wise particles each of which s ∈ S has its own coordinates and
impulse x(s), p(s) ∈ R3. In the method of collective behavior one quantum particle
of the mass M and charge Q is represented by the swarm S each member s ∈ S
of which has the mass m = M/n and the charge q = Q/n. The elements of this
swarm are called the samples of this quantum particle. We suppose that the total
number of samples n is so large that the swarm can be used as the approximation
of the continuous media. E.g., if we need use the smaller and smaller spatial grain
some samples will always occur in each spatial cell. But the dispersion of speeds will
grow when the grain decreases, and we will have the separate swarm for each spatial
grain δx.

The choice of spatial grain is closely connected with by the definition what object
must be considered as quantum particle. Thiis definition in turn depends on the
concrete problem and quantum particles are not necessary elementary in the sense of
theoretical physics. The definition what must be treated as a particle presumes the
choice of the typical length ∆X and the time ∆T , so that the size of particle is much
lesser than ∆X , e.g. it can be treated as point wise, and the time interval ∆T is not
less than the typical time of the processes we are interested in. Let us agree that the
typical mean speeds of the considered shifts are much lesser than some limit speed
of all movements c. For example, an atom can be treated as a point wise particle
in he processes with ∆X > 10−8m and ∆T > 10−10s. If we decrease the value
of typical lengths and times then to obtain the right picture we must consider the
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different set of elementary particles, for example, the separate nucleus and electrons
inside of atom. If we fix ∆X and ∆T , then to obtain the dynamical picture we
must define the smaller segments δx, δt, which will represent the elementary steps
of the video film and which, however, must be much greater than the typical lengths
and times ∆̃X, ∆̃T of the more fundamental processes then the considered one (the
gap between the different fundamental processes can be about 10−20, that always
allows to make this separation). Also in the same process with the fixed energy the
times and lengths depends on masses. The separation of particles by their masses
makes possible to consider for the bulk of processes in electrodynamics only electrons
because the typical distances of flight of protons are to 1800 times smaller. We can
then treat the chosen values ∆X , ∆T as the size of imaginary screen and the length
of video film, and δx, δt as the grain of spatial resolution of screen and! the tim e of
showing of one card in the film. We choose δx and δt maximal so that our film will be
informative. After this choice the conclusion can be done about what particle should
be treated as quantum and what as classical. For this the typical values of their
action a = M(∆X)2/∆T should be compared with Plank constant h. If a < h then
the particle should be treated as quantum, otherwise as classical. In the method of
collective behavior the passage from classical to quantum type of consideration means
simply the change of swarm size, e.g. does not mean the different type of dynamics.
Due to the above mentioned reserve in the choice of resolution in the process of film
preparation we then can further decrease the values δx and δt for the forming of right
picture , for example, dividing these intervals to smaller parts and obtain the better
approximation to the solution of Shredinger equation. We assume that the space R3

is divided to the equal cubes with the side δx, and the time is divided to the equal
intervals of the longitude δt.

We introduce the value c, which is the single nonzero speed of movement of the
samples in the swarm. The intervals of time and distances will be always chosen
so that δx ≫ cδt. It guarantees that in each step of the evolution the values of
magnitudes obtained as the mean values on cubes with the side δx will change small
that is necessary for the asymptotical approximation.

The density of swarm in the point x is determined by the expression

ρ(r, t) =
N(r, t)

(δx)3
, (3.1)

where N(r, t) denotes the total number of samples occurring in the moment t in the
same cube with the point r. For the comparison with Shredinger equation in this
definition we should converge δx −→ 0, that means the consideration of the sequence
of the swarms with the densities ρn with the growing n instead of one swarm. Further
we assume that the value δx is fixed. We write ρ(x) = |Ψ(x)|2 instead of

ρn(x) −→ |Ψ(x)|2(n −→ ∞), (3.2)

where the convergence is uniform without special mentioning. This sequence of the
swarms realizing the approximation of the exact solution of Shredinger equation is
called the admissible approximation of quantum evolution.
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Our aim is to define the behavior of the samples in the swarm which gives the
admissible approximation of quantum evolution.

The main requirements to the simulation of quantum dynamics through the
collective behavior are the following.

• Quantum dynamics is simulated by the dynamics of the swarm of samples so
that in each time instant t the quantum probability equals the density of the
swarm.

|Ψ(x, t)|2 = ρ(x, t) (3.3)

in each point x of the configuration space.

• Each sample of the swarm has its own history, e.g. it preserves its individual
number in course of the whole simulating process. The types of the samples
exactly correspond to the types of real physical particles.

• The behavior of each sample is completely determined by its own state and the
state of all samples in its close vicinity.

The swarm satisfying these conditions is called the quantum swarm for one
quantum particle.

We define the behavior of the samples such that these conditions are satisfied.
For this it is sufficient to show that for the solution Ψ(x, t) of Shredinger equation
it is possible to move the samples only locally, e.g. to the small distance for the
insurance of the equation (3.3) in each time instant. Such a movement, of course,
will be a priori non natural in the dynamical sense, but we will show how it can be
done by means of the dynamical diffusion mechanism.

We note that the second rule means that we refuse from the using of complex
numbers in the description of quantum mechanics. Also the locality of all interactions
allows including QED to our model. The behavior of samples is the rule determining
the change of its internal states (the type, impulse, momentum of impulse) and the
spatial position (spatial shift). In view of the above mentioned the behavior cannot
be determined by the classical physics.

We define the quasi classical behavior of the samples called the dynamical diffu-
sion mechanism. The swarm of samples with such behavior satisfies these conditions.

Let us agree that each sample in each time instant can either to stay in place or
to move along one of the coordinate axes OX,OY,OZ with the speed c.

We call the reaction of change the sequence of the following operations on the
swarm: the choice of pair α, β of the samples located not farer than δx from each
other, which speeds are mutually opposite: v(α) = −v(β) and either simultaneous
replacement of their speeds to zero (if they are nonzero) or acquiring them mutually
opposite speeds of the module c oriented along one of the coordinate axe. The axe
is always chosen randomly from the uniform probability distribution.

The reaction of change does not change neither summed impulse of the swarm,
nor summed momentum of impulse if δx is sufficiently small. By N(r) and Ns(r) we
denote the sets of all samples in the cube with the point r and the set of samples
from this cube possessing zero speeds correspondingly; by N+

x(r), N+
y(r), N

+
z(r)
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we denote the sets of samples from the cube r, moving along the corresponding axe in
the positive direction, and by analogous symbols with the sign − the corresponding
sets but for the negative direction of movement. By |g| we denote the total number
of samples in the set g. Let us agree to denote the total numbers of samples in
a set by the same symbol as this set but with the replacement N to n. We call
r-stationary each subset S ⊆ n(r) consisting of the samples with nonzero speeds
for which

∑
α∈S v(α) = 0 and S is the maximal on including with this property.

The total number |S| of the samples of r-stationary set (which does not depend
on its choice) is denoted by s(r). Let d > 0 be a chosen constant such that the
coefficient of the diffusion is proportional to d, V (r) is a scalar field proportional to the
external potential energy with the constant coefficient of proportionality, grad V (r) =
= (Vx(r), Vy(r), Vz(r)).

We also agree to consider only non relativistic swarms, e.g. such that ns(r)/n(r)
is close to 1 for all r. It means that the bulk of samples in each cube have zero
speed. This requirement is incompatible with the point wise approximation by the
swarms 3.2 of the exact wave functions for the external potential of Coulomb form 1/r
because the mean speed of samples in the vicinity of zero point for such potentials
must converge to infinity. For the asymptotic convergence 3.2 we would have to
assume that c can be chosen as large as needed for every next swarm number n. In
the reality c cannot exceed the speed of light that establishes the natural limitation
to the accuracy of the swarm approximation of the solutions of Shredinger equation.

The dynamical diffusion mechanism of evolution is the following sequence of the
operation on the swarm:

• 1) The sequence of random reactions of change with the uniform distribution
of probability, which gives the distribution of the speeds with the property
s(r)/ns(r) = d for each point r. If n(r) is small, this equality must be satisfied
with the maximal accuracy (see agreement about the accuracy from above).

• 2) The acquiring of speeds to some samples from Ns(r), randomly chosen from
the uniform distribution so that for each axe the signs of newly acquired speeds
along this axe are the same, and if vu(r) is the summed speed acquired to the
samples from r-th cube along the axe u, u = x, y, z, then for all such u the
equation vu(r)m = −Vu(r) is fulfilled with the maximal possible accuracy.

• 3) The change of coordinates r(α) of each sample corresponding to the Galileo
law: rnew(α) = r(α) + v(α)∆t.

• 4) Recalculation of V (r) accordingly to the new positions of samples.

We do not concretize the method of recalculation of the potential energy. It may
be done by Coulomb formula or by the diffusion mechanism as was proposed in the
work [?].

The dynamical diffusion swarm cannot be represented as an ensemble of point
wise particles with the classical interaction. The item 1) says about two things:

• there is the force with the random direction which acts to the samples (compare
with [?]), and
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• the samples acquire the mean value of speed within the accuracy determined
by δx (the lesser δx is the more accurate mean value is taken).

For each time instant t if ∆x is sufficiently small then the density of swarm ρ(r, t)
for any point r will not depend on the orientation of the coordinate axes. Indeed,
let δ1 be such that cδt ≪ δ1x ≪ δx, and let v(r) denote the average speed of the
samples in the point r, found by the averaging on the samples with the coordinates
r1 : ‖r − r1‖ < δ1x. The total number of the samples occurred in the unit of time
from the vicinity of the point r1 to the vicinity of the close point r2 will be then
proportional to the dot product v(r1)(r2 − r1)/‖r2 − r1‖2, which does not depend on
the orientation of the coordinate axes.

A state of the dynamical diffusion swarm is determined by the coordinates and
speeds of all its samples. This is its principal difference from the ensemble of DMC
method where there are no speeds of the samples.

4. Differential equations for the dynamical diffusion swarm

There is no system of differential equations on the density of the diffusion swarm and
its average speed which is equivalent to Shredinger equation.

Nevertheless, there is the sequence of such systems which realizes the admissible
asymptotic approximation of the solution of Shredinger equation. Each of the system
from this sequence depends on the fixed elementary length δx. For example, the
intensiveness of the diffusion process will beb proportional to (δx)−3. This does not
allow to launch δx to zero as it is always done in the mathematical analysis when
it is applied to the processes of classical physics. The value of grain δx must be
chosen such that the approximation of the density ρ = |Ψ|2 of the wave function
by the density of the diffusion swarm within (δx)3 is satisfactory for the considered
process. Only after the fixation of δx it is possible to build the diffusion swarm
of the corresponding intensiveness and the differential equations approximating its
dynamics which will be equivalent to Shredinger equation.

A state of the dynamical diffusion swarm is determined by the pair of functions

ρ(t, r̄), p̄(t, r̄), (4.1)

where ρ is the scalar function of density of the samples, p̄(r̄) is the vector function
resulting impulse of the samples in the point r̄ defined as lim

dx−→0
P (r, dx)/(dx)3, where

P is the summed impulse of the samples occurred in the cube with r with the side dx.
Here we assumed that dx can be done sufficiently less than the grain δx, determining
the coefficients of the equation on ρ and p̄.

The dependence of equations on the grain δx will be revealed as follows. The
summed impulse p̄(t, r̄) varies slowly when r̄ changes on values larger than δx. But

its derivative
∂p̄

∂t
will be very large: of the order 1/(δx)3, and will vary rapidly as

well. E.g., the graph of the function p̄(t, r̄) is sufficiently smooth if we look at it with
the large grain δx, but if we raise the resolution by decreasing the grain δx, we see
that the graph looks like a saw with acute teeth. The more is resolution 1/δx the
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more is sharpening of the teeth, it is limited by the limit of speed c (compare with
[?]). This important for further condition we call the non relativistic approximation
and will write it as v ≪ c.

In view of isotropy of the diffusion process the change of density ρ(r, t) in the
time and its second derivative can be found by the integration on the surface of the
sphere S(r) of radius δx by formulas

∂ρ(r, t)

∂t
=
∫

S(r)

p̄(r, t)n̄(r̄1)ds(r1),

∂2ρ(r, t)

∂t2
=
∫

S(r)

∂p̄(r, t)

∂t
n̄(r̄1)ds(r1).

(4.2)

These formulas are right for any mechanism of changing of the speed of samples.

Now we derive the law of changing of the resulting impulse
∂p̄

∂t
ā of the swarm

in the small sphere with center in the point r̄, which results from the moveme of
the samples along the vector ā of normal to the surface of sphere of the unit length.
Three magnitudes make the deposits to the change of the resulting impulse:

• Penetration of the samples which have acquired the speed in the reaction of
change through the small element of the surface (diffusion).

• Penetration of the samples which have acquired the speed from the action of
external potential.

• Penetration of the samples which have preserved their speed (by inertia).

It follows from the definition of the diffusion process that these deposits equal corre-
spondingly −I gradρā, −κρ gradV ā and gρp̄ā, where I, κ, g is the intensities of the
corresponding processes. The choice of units system allows us to make g = 1. The
dependence of the grain of spatial resolution needed for approximation of Shredinger
equation has the form:

I = h2

2m2(δx)3
, κ = h

mδx
. (4.3)

In view of the non relativistic supposition we can omit the last summand which
is sufficiently smaller than the first two for the small δx. We then obtain the following
approximate formula.

∂p̄

∂t
≈ −I gradρ− κρ gradV. (4.4)

The resulting equation on the density of the diffusion swarm has thus the form:

∂2ρ(r)

∂t2
= −

∫

S(r)

I gradρ− κρ gradV )n̄(r′) dS(r′), (4.5)

where the coefficients I, κ can be found by 4.3.
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We prove that the quantum swarm satisfies 4.5, which means the admissible
approximation of the quantum dynamics by the evolution of the swarm.

The method of collective behavior permits to give the simple algorithm for the
computation of the energy, impulse and momentum of impulse of quantum particle
represented as the swarm of samples. Here accordingly to the quantum rules for
the finding of any magnitude we have to averaging on the values of the reciprocal
magnitude. To find the impulse we must fix some value of the time interval ∆t
and fulfill averaging of impulses on all samples on any values of the distances they
overcome. This receipt in our notations gives the vector

(
∑

r

cm
nx(r)+ − nx(r)−

n(r)
, cm

ny(r)
+ − ny(r)−

n(r)
, cm

nz(r)
+ − nz(r)

−

n(r)
) (4.6)

which equals to the average impulse of all samples in the swarm found by averaging on
the passes in the fixed time interval. The analogous calculation of the momentum of
impulse or the potential energy gives the average momentum or the average potential
energy.

When calculating the average kinetic energy we have to fix the pass δx and to
take the average energy on all instant of the time t, because the time is the reciprocal
magnitude for the energy. It means that we must sum only the energies of the samples
which are moving in the considered time instant, e.g., for any cube for the speed v =
= cnx/n along the axe x the expected total number of such samples is nv/c, and
their fraction in the total number of samples is nx/n. Here we use the non relativistic
assumption that the total fraction of the moving samples is small. The total kinetic
energy found by this rule is

mc2nxnx/n+mc2nyny/n+mc2nznz/n

which coincides to the kinetic energy found by the conventional formulaMv2
mean/2 =

= ((cnx/n)2 +(cny/n)2 +(cnz/n)2)nm/2. The laws of conservations for the impulse,
momentum of impulse, energy of the swarm then follow from the classical laws of
conservation and the non relativistic assumption. In the next paragraph we prove
that the diffusion swarm dynamics can give the admissible approximation of the
quantum one. Using Erenfest theorems and the laws of conservation for quantum
dynamics we conclude that our method of calculation of these magnitudes A gives
their quantum mean values found by the formula 〈A〉 =

∫
Ψ∗(r)AΨ(r)dr.

5. About the diffusion swarm with non uniform intensity

The intensiveness of the diffusion equals the coefficient of the Laplace operator in the
diffusion equation. The intensiveness determines the total number of samples pass-
ing through the unit of square in the unit of time. To simulate quantum dynamics
we need the diffusion swarm with the non uniform intensiveness. It means that the
intensiveness of diffusion depends on the chosen grain of the spatial resolution δx. In
this section we discuss how non uniform intensiveness of diffusion can be obtained
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in the same swarm. The concrete mechanisms discussed here will not be used fur-
ther; they can be interesting only for the programming realization of the dynamical
diffusion method.

We at first consider the case when the external potential is constant grad V = 0.
The dynamical diffusion process with the non uniform intensiveness can be insured
by the special mechanism which we call threads. We illustrate the method on the
following example. We suppose that all samples move not in all the space but along
one closed trajectory (thread) which is determined by the smooth embedment of the
circle to the space: γ : S1 −→ R3. We suppose that the change of speeds happens
only along this trajectory so that the samples remain in this thread in each time
instant. This is equivalent to the imposing of the holonomic tie to the samples. We
then suppose that the linear density as well as the module of speed of the samples
is almost equal in all point of the trajectory. We consider the cube containing one
point of this trajectory. The flow of samples through its border will not depend on
its size δx, because the thread is only one. The intensiveness of this process is thus
proportional 1/(δx)3, because the quantity of samples penetrating in unit of time
into the cube with the side δx does not depend on δx, and the density is obtained
by the division of the quantity of samples to the volume. This example is not very
good because many areas of the space remain without the samples at all.

We consider the next example. Let the space be divided to the cubes which are
grouped by the layers 1, 2, . . .. For each j = 1, 2, . . . the cubes of the layer j + 1
consist of 8 cubes of the layer j, and their side, correspondingly, is twice large. For
each j the change of samples between the neighbor cubes of the layer j, occurring to
the same cube of the layer j + 1, goes only through the narrow channel with small
capacity independent of j. The quantity of samples moving between the cubes of any
fixed layer will not then depend on the number of this layer. It can be guaranteed
by the appropriate choice of the pair for the change of impulses. Such a mechanism
gives us the required intensiveness of the diffusion proportional to 1/(δx)3, in view
of the definition of density (8.4).

Now we consider the case of varying external potential. At each step of the
evolution for the samples acquiring or loosing their speeds in the change we will use
the rule from above, which insures the intensiveness proportional to 1/(δx)3. The
samples acquiring their speed from the action of the external potential will move as
usual, independently of layers. We then obtain the formula (4.3). This space design
show how in principle the necessary non uniform intensiveness can be obtained in on
swarm.

Practical realization of these methods presumes that we trace for the spatial
location of the separated parts of the swarm, which means the refusal from the
uniformity of the space and passage to the fractal space. The space with fractal
dimensionality arises if we use the non uniform grid for the method of finite elements.
This is why the proposed computational receipt says that we must fix the grain
δx of the linear resolution such that the corresponding approximation of the wave
function is satisfactory for our aims, and then consider the diffusion swarm with
the intensiveness found by 4.3. If we are not satisfied with the obtained dynamical
picture, we must choose the new value of δx and repeat all the work.
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6. Equivalence of quantum and dynamical diffusion swarms

Here we show that the sequence of diffusion swarms represents the admissible approx-
imation of quantum evolution. We have defined the quantum swarm as the swarm
satisfying 3.3 and which evolution can be represented as the local movements of the
samples.

At first we determine that the quantum swarm exists, e.g., that the equation 3.3
can be really reached by only local shifts of the samples. Then we prove that the
mechanism of the movements of samples coincides with the diffusion that gives the
main result.

Let us consider the quantum swarm. We start with Shredinger equation

ih
∂Ψ(r, t)

∂t
= − h2

2M
∆Ψ(r, t) + Vpot(r, t)Ψ(r, t), (6.1)

which can be rewritten as

Ψr
t (r) = − h

2M
∆Ψi

t(r) +
Vpot

h
Ψi(r),

Ψi
t(r) = h

2M
∆Ψr

t (r) −
Vpot

h
Ψr(r)

(6.2)

for the real and imaginary parts Ψr, Ψi of the wave function Ψ. We focus on the
evolution of the density of quantum swarm, which is the function

ρ(r, t) = (Ψr(r, t))2 + (Ψi(r, t))2.

Fixing the value of δx we apply for the approximation of the second derivative
the difference scheme of the form

∂2Ψ(x)

∂x2
≈ Ψ(x+ δx) + Ψ(x− δx) − 2Ψ(x)

(δx)2

for each time instant, where the wave function is supposed to satisfy all the sufficient
conditions for such approximation. Since the addition of any constant to the poten-
tial energy Vpot does not influence to the quantum evolution of the density, we can

consider instead of Vpot the other potential V = Vpot + α, where α = − 3h2

m(δx)2
, that

leads to the disappearing of the summand 2Ψ(x) in the difference schemes for the
second derivative on x, y, z (from which the coefficient 3 arises) after its substitution
to Shredinger equation. We introduce the simplifying coefficient

γ = h
2M

1
(δx)2

.

Since we yet do not know the mechanism of moving of the samples in quantum
swarm, we suppose that we simply either take off some quantity of the samples from
any cube or put it there from some storage. We split the evolution of the quantum
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swarm in the time to so small segments of the longitude δt, that in each of which
the samples move only in the framework of two neighbor cubes. If we prove that the
evolution of quantum swarm on such segment is insured by the diffusion mechanism,
it will be right for the whole evolution as well. That is our supposition does not limit
the generality. We also agree that these cubes differ from one another by the shift
to δx along the axe x, that does not limit the generality as well. Let the centers of
these cubes be x and x1 = x+ δx. In these suppositions the summand Ψ(x− δx) in
the difference scheme disappears as well and on the considered small time segment
the evolution of quantum swarm is determined by the system of equations:

Ψr
t (x) = −γΨi(x1) + V (x)Ψi(x),

Ψi
t(x) = γΨr(x1) − V (x)Ψr(x),

(6.3)

and by the analogous system obtained by the substitution of x in place of x1 and
vise versa.

For such a segment we thus have

∂ρ(x)

∂t
= 2Ψi(x)(γΨr(x1) − V (x)Ψr(x)) +2Ψr(x)(−γΨi(x1) − V (x)Ψi(x)) =

= 2γ(Ψi(x)Ψr(x1) − Ψr(x)Ψi(x1)) = −∂ρ(x1)

∂t
.

(6.4)
It results in that the outcome of the samples in one cube equals their income to
the other. The evolution of quantum swarm then satisfies the condition of locality.
In the order to compare these evolution with the diffusion we now find the second
derivative of the quantum density to time:

∂2ρ(x)

∂t2
= 2γ[(γΨr(x1) − V (x)Ψr(x))Ψr(x1) + Ψi(x)(−γΨi(x) + V (x1)Ψ

i(x1))−
(−γΨi(x1) + V (x)Ψi(x))Ψi(x1) − Ψr(x)(γΨr(x) − V (x1)Ψ

r(x1))] =
2γ2(Ψr(x1))

2 − 2γV (x)Ψr(x)Ψr(x1) − 2γ2(Ψi(x))2+
2γV (x1)Ψ

i(x)Ψi(x1) + 2γ2(Ψi(x1))
2 − 2γV (x)Ψi(x)Ψi(x1)−

2γ2(Ψr(x))2 + 2γV (x1)Ψ
r(x)Ψr(x1) =

2γ2((Ψr(x1))
2 + (Ψi(x1))

2 − ((Ψr(x))2 + (Ψi(x))2))+
2γ[(V (x1) − V (x))((Ψr(x))2 + (Ψi(x))2) + o(δx)],

(6.5)
where o(δx) = (Ψr(x)Ψr(x1)+Ψi(x)Ψi(x1)− ((Ψr(x))2 +(Ψi(x))2))(V (x1)−V (x)).
Now we compare it with the expression for the second derivative of the density of
diffusion swarm found in the previous section, taking into account that in our case the
change of samples goes between two neighbor cubes along the axe x only. Comparing
with 4.5 in view of 4.3, we conclude that the second derivative of the density of
quantum swarm asymptotically converge to the second derivative of diffusion swarm.

If we choose instead of the initial state the state where its density has Gauss
form which is the ground state of harmonic oscillator, then for the corresponding
value of energy V = a(x2 + y2 + z2) we have ∂ρ/∂t = 0 in the initial instant for any
point of space. It is proved that the second derivative of the quantum swarm density
and of the diffusion swarm density are the same, hence the diffusion swarm will be
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good approximation for the quantum density on some interval ∆T . Switching on
slowly some potential we will have also the approximation of any quantum evolution
in the limit of swarms for the unlimited increasing of n.

The swarm approximating quantum dynamics of one particle depends on the
choice of δx. After the fixation of δx we obtain for unlimitedly decreasing δt the
approximation of the wave function within δx. The intensiveness of the diffusion will

be determined by δx, it will be h3

m3c(δx)3
. If we want to decrease the grain δx we

must allow the more quantity of moving samples in the unit volume. It is necessary
due to the uncertainty principle for length and impulse: the dispersion of speeds of
the samples will grow if δx decreases. In any case for the obtaining of the dynamical
picture one has to fix the grain of spatial resolution δx.

If the total number of samples n is limited we obtain the model of quantum
dynamics with decoherence of the inbuilt type. This model can be extended to the
multi particle case where it can serve as the approximation of quantum dynamics
in the standard Hilbert formalism (see ([?]). The robustness of this scheme for
the numerical computations follows from that it gives Born rule for the quantum
probability which thus turns to be inbuilt into the algorithmic formalism, in contrast
to Copenhagen formalism where this rule is postulated.

7. Restoration of wave function from dynamical diffusion
swarm

We have solved the problem of approximation of the dynamics of density for one
quantum particle by the special diffusion process with the non uniform intensity. A
state of the dynamical diffusion swarm is determined by a pair 4.1. Such a pair
does not contain the notion of complex numbers which induced the famous quantum
interference in the standard formalism. Furthermore, the diffusion swarm gives no
beautiful differential equations of Shredinger type for ρ and p̄. It radically differs
from the classical processes (for example, heat transform or oscillations) because its
intensity depends on the chosen grain of spatial resolution. We agree to these for
the sake of the main: the economy of the computational resources required for the
description of quantum dynamics.

Now, to finalize the picture we have to solve the inverse problem: to show how
to restore the wave function Ψ from the given state of the dynamical diffusion swarm
4.1. to do this we turn to the equality 6.4, and substitute to it the expression of
the wave function through the density: Ψ(r) =

√
ρ(r) exp(iφ(r)). We must find the

phase φ(r) of the wave function. Since only relative phase has the physical sense we
can fix some point r and consider the phase of the other point r1 relatively to r. If
r1 is close to r, the equation 6.4 gives us

φ(r) − φ(r1) = arcsin k(δx)2
p̄(r̄ − r̄1)√
ρ(r)ρ(r1)
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which results in the following formula for the finding of the relative phase:

φ(r1) =

∫

γ

k(δx)2v̄ dγ̄ (7.1)

where the contour γ goes from r to r1. This definition depends explicitly on the
choice of contour γ, hence we have to prove its correctness, e.g., its independence of
the contour γ. Since the phase is determined within an integer multiplier of 2π, the
different choices of the contour can result at most in the change of the phase on such
a number that takes place in case of excited states of electron in hydrogen atom with
the nonzero momentum (for example, 3d). We show that the integration of speed
v̄ of the swarm on the closed contour preserves its value in the time with the more
exactness the less δx is. It involves that if in the initial time instant the definition
(7.1) was correct, it then remains correct for the next time instants.

We now consider the derivative of the integral of the speed for the closed con-
tour γc. Applying the formula (4.5) and accounting ∂p̄/∂t = ρ ∂v̄/∂t, we obtain

∂
∂t

∫

γc

(δx)2v̄ dγ = −
∫

γc

I(δx)2
grad ρ
ρ + κ(δx)2 grad V. (7.2)

The first summand gives zero after the integration on the closed contour, because it
is grad ln ρ, the second summand gives zero by analogous reason.

Now it is sufficient to verify the correctness of the definition (7.1) in the initial
time instant that can be done immediately for any task. If the wave function of
initial state can be obtained from the ground state in the Coulomb field where v̄ = 0,
then the correctness follows from the proved because there is no any phase shift here
to 2πk. If for the obtaining of the initial state in the considered problem we must
start from some excited state with the shift of the phase, the correctness should be
checked for this state at first.

8. Collective behavior for n particles

Let we are given a set of n quantum particles that we enumerate by integers:
1, 2, . . . , n. We assume that the main act of evolution is the reaction of scatter-
ing when these particles fly to each other simultaneously and can associate in some
stable complex objects called molecules. Factually, the more general picture of scat-
tering takes place: initial particles can consist of some more elementary particles, and
in the reaction these more elementary particles can regroup and form the products
of the reactions, which consist of the same elementary particles as the initial objects,
but in the other configurations.

The simple example of such a reaction is the scattering of a proton on an atom of
hydrogen. Here the moving proton (proton number one) flies to the staying hydrogen
atom which in turn consists of an electron and proton number two. The possible
products are: a) isolated proton number one and hydrogen atom, b) isolated proton
number two and hydrogen atom formed by the electron and the proton number one
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(the recharge), c) forming of the molecular ion of hydrogen (two protons glued by
the electron), and d) separate protons and electrons. The cases b) and c) represent
the main interest here because we then have the recombination of constituents (b)
or association of the new molecule (c).

We assume that the right description of the elementary reactions with n particles
is sufficient to build the actual model of the processes of any degree of complexity
including the description of the simple forms of living entities, like viruses and bac-
teria. Namely, the easy generalization of abstract methods for scattering will give us
the picture of the behavior of very complex objects.

The main requirement to these types of models is that the required time and
memory for the simulation must grow not faster than linearly of the total number
n of participating particles, and the single essentially not conventional procedure in
the simulation is the simulation of decoherence.

The easiest algorithmic model of decoherence is called the absolute decoherence
model. It claims that decoherence comes as the reduction of quantum state

|Ψ〉 =
∑

j

λj |j〉 (8.1)

in the instant when the memory of the simulating computer cannot include the whole
notation of this state. The absolute model can be concretized as follows. We suppose
that the amplitudes in 8.1 cannot exceed some level ǫ > 0, called amplitude grain. If
in the unitary evolution some amplitude λj becomes less than ǫ, the corresponding
summand λj |〉 is merely excluded from the state 8.1, with the corresponding renor-
malization of state. In the work [3] it was shown that this simple rule gives the Born
rule for probability to obtain the state |j〉 as the result of measurement of ‖psi〉 as
pj = |λj |2. But this is yet not the final form of simulating algorithm because the
rule of small amplitude reduction requires matrix algebra technique and thus can-
not serve as the core of simulating algorithms due to the non economical essence of
matrix computations.

To obtain the robust scheme of simulating algorithm we must sequentially
use the method of collective behavior, where the algorithmic reduction of quan-
tum state is the inbuilt property. Let us consider the swarm representation of our
n particles 1, 2, . . . , n, where S1, S2, . . . , Sn are the swarms of samples correspond-
ing to their states |Ψ1〉, |Ψ2〉, . . . , |Ψn〉. If we consider the ensemble consisting of
all these samples, it will be the representation of non entangled state of the form
|Ψ1〉

⊗ |Ψ2〉
⊗
. . .
⊗ |Ψn〉. But to represent the entangled state of the form

Φ〉 =
∑

j1,j2,...,jn

λj1,j2,...,jn
|j1, j2, . . . , jn〉 (8.2)

we must introduce the new and crucial element to the method of collective behavior.
This is the bonds between the samples of the different swarms. The basic state ji can
be treated as the coordinate of particle i in the corresponding configuration space.
The representation of wave function in the form 8.2 means that there are bonds
connecting points j1, j2, . . . , jn in one cortege. The relative quantity of bonds of this
form (their total number divided to the total number of all bonds) is |λj1,j2,...,jn

|2.
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We assume that the bonds connect not spatial points but the samples of real
particles. They have the form of corteges

s̄ = (s1, s2, . . . , sn) (8.3)

where for any j = 1, 2, . . . , n sj ∈ Sj . The wave function |Φ〉 is then represented
by the set S̄ of corteges s̄ so that for each j = 1, 2, . . . , sj ∈ Sj there exist exactly
one cortege of the form 8.3. Each cortege plays the role of the so called world in the
many world interpretation of quantum theory. We treat this cortege 8.3 as one probe
representation of the n particle system and all interactions goes inside the same
cortege whereas the real system state results from the interference of amplitudes
corresponding to all cortege which occur in the same spatial cell. We call S̄ the
swarm for n particle system.

The density of the swarm S̄ is defined as

ρS̄(r1, r2, . . . , rn) = lim
dx−→∞

Nr1,r2, . . . ,rn, dx

(dx)3n
, (8.4)

where Nr1,r2, . . . ,rn, dx is the total number of cortege which occur in the 3n dimen-
sional cube with the side dx and the center r1, r2, . . . , rn.

If the wave function |Φ〉 is the tensor product of one particle wave functions:

Φ〉 =

n⊗

i=1

|φi〉

The corresponding bonds can be obtained by random choice of samples sj ∈ Sj for
each j = 1, 2, . . . , n, forming one cortege s1, s2, . . . , sn. With this choice of cortege
we obtain that the density of swarm satisfy the Born condition which can be written
for swarms in the form

∑

r̄∈D

|〈r̄|Φ〉|2 =
Nr̄,S̄

N
(8.5)

where D ⊂ R3n, Nr̄,S̄ is the total number of corteges occur in the area D. But for the
entangled state |Φ〉 this choice of corteges for the kit S̄ will not give us the equality
8.5. We thus must take 8.5 as the definition of the choice of corteges in S̄. But to
define the swarm we also need the velocities for all samples, namely, we need the
generalization of rules from the previous paragraph to the case of n real quantum
particles.

Let Ψ(r1, r2, . . . , rn) be the wave function of n particle system, Ψ =
= |Ψ|exp(iφ(r1, r2, . . . , rn) be its Euler expansion. We denote by gradj φ(r1, r2, . . . , rn)
the gradient of Ψ taken on the coordinates of particle j, where j ∈ {1, 2, . . . , n} is
the fixed integer. The generalization of formulas from the previous paragraph to the
n particle case has the form

|Ψ(r̄)| =
√
ρ(r̄);

φ(r) =
∫

γ̄: r̄0−→r̄

k(dx)2v̄ · dγ,

v̄ = a(dx)−2 ¯grad φ(r̄),

(8.6)

Quantum Computers and Computing, V. 7, �1, 2007 43



Yu. I. Ozhigov

where r̄ means r1, r2, . . . , rn, ¯grad means grad1, grad2, . . . , gradn, and γ̄ is the path
in 3n dimensional space. The rules 8.6 is sufficient to determine the swarm given the
wave function, if we agree to join the samples into corteges independently of their
velocities. The microscopic mechanism of swarm dynamics takes the following form.
Impulse exchange between two corteges of samples: s̄ = (s1, s2, . . . , sj, . . . , sn) and
s̄ = (s1, s2, . . . , sj , . . . , sn) is impulse exchange between the two samples sj and sj

provided s̄ and s̄ belong to the same spatial cube in the configuration space R3n for
n particles. With this definition the reasoning from the paper [12] can be repeated
straightforwardly and we obtain that this microscopic mechanism of impulse exchange
for n particles ensures the approximation of n particle quantum dynamics within the
accuracy of the order dx3n in the determining of wave function.

The described method of collective behavior gives us the good framework for the
economical simulation of quantum evolution.

9. Genetic method of entangling

The method of collective behavior yet does not give us the algorithm for simulation
of quantum system dynamics, because the starting point of this method requires
the wave function description. To make the collective behavior method complete we
must point how to perform entangling, that is how to choose the initial corteges of
samples. This choice must guarantee the best approximation of wave function by
corteges 8.6. We then can treat one sample as a currier of amplitude grain in sense of
[3], and the swarm dynamics will thus give us the approximation of unitary dynamics
and decoherence simultaneously. The task of choosing corteges is thus the core of
quantum simulation.

The experiments in the real simulation show that the task of choice of corteges
can hardly be solved by the one step procedure. I suggest the following simple genetic
algorithm for finding the corteges, which uses the sequential repetitions of dynamical
scenarios when the choice of initial conditions for each repetition will use the result
of the previous one.

We will describe the genetic entangling on the example of scattering of n quan-
tum particles. We start from the non entangled state of them where the particle j
state is determined by the wave function Ψj , or, in swarm representation, by the
swarm Sj . At the first scenario to determine the initial state of our swarm S̄ini we
choose the corteges s̄ at random. After the fixed small time of evolution ∆t of the
swarm we obtain its final state S̄fin. If we have a huge total number N of samples
beforehand, in the swarms Sj , we would obtain the good approximation of wave
function by S̄fin, where the final quantity of all samples will serve as the decoher-
ence factor. The problem is to use the strictly limited number N of the samples to
simulate the real dynamics with the admissible accuracy. Here in case of scattering
under admissible accuracy we mean the right separation of the products of reactions:
for chemical reactions there is the list of possible products with the corresponding
probabilities depending on the initial state of reagents. With this limitation of N
we must charge the samples with the two roles: the first is to simulate the unitary
dynamics of the wave function, and the second is to simulate the decoherence result-
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ing from the amplitude grain. We note that these two role are not in full agreement
with each other. The approximation of the wave function requires the small distance
‖ΨShoedinger −Ψswarm‖ whereas the decoherence resulting from the amplitude grain
nulls all states with the amplitude module less than ǫ that can give the big discrep-
ancy with the wave function in the unitary evolution especially when the dispersion
of amplitude distribution is large.

We thus have to choose corteges s̄ so that the distribution of samples among them
be the most economical for unitary dynamics as well as for decoherence on the short
time segment ∆t. Call the space R6n double configuration space for n particles. The
sense of it is that we will consider the pair of states: initial and final. For each cortege
s̄ini in the initial swarm there is one and only one cortege s̄fin which results from
s̄ini in the swarm evolution. We choose the division of double configuration space for
n particles to the cells of the form of cubes, and group the resulting pairs (s̄ini, s̄fin)
of corteges into groups G1,G2, . . . ,Gk so that each group consists of all pairs which
occur in the same spatial cube of the division. Let the numbers of elements Nj in
these groups be ordered directly: N1 ≥ N2 ≥ . . . ≥ Nk. We choose the first k1 < k
groups and call the pairs in them right pairs. The other pairs are called wrong. We
are now ready to obtain the initial state for the next repetition of scattering. We
exclude the wrong pairs from S̄ and reorganize their members to the other corteges by
the rules of genetic algorithms. Here the application of various genetic methods like
the cross over is appropriate, when we group the former members of wrong corteges
likely to the grouping of right corteges. For thus created the second version S̄2 of
initial conditions we launch the repetition again and so on. It results in the sequence
of pairs

(S̄1
ini, S̄

1
fin), (S̄2

ini, S̄
2
fin), . . . (9.1)

where each pair (S̄j
ini, S̄

j
fin) represent the digest of the repetition number j. The

passage from one pair to the next consists of three steps: swarm evolution via im-
pulse exchange, selection and the replication of right pairs. The exchange of impulses
between the different corteges plays the role of mutations on the evolutionary pro-
gramming. If we consider the swarm S̄ as the world in the many world interpretation
of quantum theory, the impulse exchange between the two corteges means the inter-
action between the different worlds. The chain 9.1 must be abrupt when the number
of elements of the selected groups becomes stable.

We represent the argument for that the method of state selection lies along the
core of standard quantum unitary dynamics for many particles. Let us turn to the
Feynman path integrals (see [10]) where the wave function Ψ in each time instant t
is determined by the following equation:

Ψ(t, r̄) =

∫

R3n

K(t, r̄, t1, r̄1)Ψ(t1, r̄1), (9.2)

where K is the kernel of our system, that can be treated as the amplitude careered by
a cortege, if we assume that the samples carrier complex numbers amplitudes instead
of their velocities as in the collective behavior method. Amplitudes K careered by
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a cortege, thus depend on the initial and the final position r̄1 and r̄, and must be
then closed for the corteges which initial and final spatial positions are closed. Let
us estimate the deposit to the probability |Ψ(t, r̄)|2 of two groups of corteges with l
elements each: the first group contains in the same group Gj , and the corteges from
the second group have only the final positions closed but the initial are different, and,
for simplicity, randomly chosen. The deposits of these two groups to the probability
are approximately

d1 = |
l∑

s=1

α|2 = k2|α|2, d2 = |
l∑

s=1

αeiφs ≈ k|α|2

where the phases φs are distributed randomly. The last approximate equality follows
from the fact that for the uniform distribution of φs the medium of the distance of
this sum from zero must have the order square root of the module of a summand.
Hence, the deposit of the first group is prevailing. Returning to the samples in the
collective behavior, we note that the complex amplitudes here are substantiated by
the velocities of samples, and the deposit of minor groups Gj for j > k1 will be
much smaller than the deposit of the right samples taken in the same quantity, that
legalizes the selection procedure, if we assume that the wave functions are continuous.

We illustrate the action of the genetic algorithm of state selection on our example
with the association of protons in the molecular ion of hydrogen. We suppose that
the initial state of the first proton and the atom of hydrogen are close sufficiently to
the forming of molecular ion of hydrogen. We treat the electron not as the separate
particle here, but as the factor which creates the attracting potential between protons.
If the first choice of pairs (1 proton sample, 2 proton sample) is done such that many
pairs were formed with the distance between protons far from the distance r0 of
stable molecular ion of hydrogen, then the protons from these pairs will fly to far
distance one from another, and hence this pairs occur in the different groups. It
results after several iterations in the growth of the groups where the initial distance
between protons is close to r0, and we obtain in the final the prevailing quantity of
pairs which form the molecular ion of hydrogen.

In case when the initial positions of the first proton and the hydrogen atom
are far, this scheme has to be extended. Here we must take into consideration also
photons, which are emitted by this system and thus decrease its energy. Photons
can be included to the scheme with quantum state selection as well. But the direct
consideration of photons is not necessary, because we can replace them by some kind
of friction, and split the time frame ∆t to the smaller segments so that in the last
segment the positions of flying proton and the target atom will be close enough to
apply the selection procedure.

The simulation we have proposed touches the basic things in quantum mechanics.
At first it factually utilises the fundamental idea of many worlds (Everett). Each
cortege consisting of samples of the real particles represent the separate quantum
world. The different worlds interact with each other, and the selection process plays
the role of judge in this interaction. The interaction inself results from the mechanism
of dynamical diffusion when the close corteges exchange their impulses on the fixed
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place j. This exchange represents the exact form of the so called pre quantum fields
considered in [6].

10. Conclusion

We propose the simple genetic algorithm for the simulation of association of atoms
into molecules, based on the method of collective behavior. This algorithm is scal-
able in the sense that we can add new particles to the considered system and the
construction still remains valid. In particular, it admits the inclusion of photons,
and the complex molecules. The interesting peculiarity is that this algorithm can
be reversed, the formal inversion, when we treat the dissociation process, gives us
the picture of splitting of the molecule to the more simple molecules of atoms and
we can estimate the probabilities of the both processes even for large quantity of
participating atoms.

The description of association and dissociation of molecule based on the method
of collective behavior is completely quantum and is based on Hilbert formalism. This
tool is scalable and can be applied to the complex chemical processes. In particular
we can expect that this approach is applicable to the explanation of the phenomenon
of molecular memory detected in experiments.
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We discuss a procedure of statistical reconstruction of quantum states. Multiparametric statistical 

model providing stable reconstruction of parameters by observations is considered. The only 

general method of this kind is the root model based on the representation of the probability density 

as a squared absolute value of a certain function, which is referred to as a psi-function in analogy 

with quantum mechanics. The psi-function is represented by an expansion in terms of an 

orthonormal set of functions. It is shown that the introduction of the psi-function allows one to 

represent the Fisher information matrix as well as statistical properties of the estimator of the state 

vector (state estimator) in simple analytical forms. The chi-square test is considered to test the 

hypotheses that the estimated vector converges to the state vector of a general population. The 

method proposed may be applied to its full extent to solve the statistical inverse problem of 

quantum mechanics (root estimator of quantum states). In order to provide statistical completeness 

of the analysis, it is necessary to perform measurements in mutually complementing experiments 

(according to the Bohr terminology).  

The method of statistical estimation of the quantum state based on solving the likelihood equation 

and analyzing the statistical properties of the obtained estimates is developed. The developed 

approach applied to quantum-state reconstruction is based on the amplitudes of mutually 

complementary processes. The classical algorithm of statistical estimation based on the Fisher 

information matrix is generalized to the case of quantum systems obeying Bohr’s complementarity 

principle. The maximum likelihood technique and likelihood equation are generalized in order to 

analyze quantum mechanical experiments. It is shown that the requirement for the expansion to be 

of a root kind can be considered as a quantization condition making it possible to choose systems 

described by quantum mechanics from all statistical models consistent, on average, with the laws of 

classical mechanics. 

 

 

 

Introduction  
 

The ability of measuring quantum states, no doubt, is of fundamental interest, because 

it provides a powerful tool for the analysis of basic concepts of quantum theory, such as the 

fundamentally statistical character of its predictions, the superposition principle, the Bohr’s 

complementarity principle, etc. By the measurement of quantum state we will imply a data 

acquisition procedure followed by a computation procedure. The first step is a genuine 

measurement consisting of a set of operations under the representatives of a quantum 

statistical (pure or mixed) ensemble, as a result of which the experimenter acquires a set of 
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rates with which particular events occur. The second step consists of the mathematical 

procedure of reconstructing the quantum state of an object using the combination of the 

obtained statistical data. 

The necessity of properly measuring the quantum states is dictated by the applied 

problems. For example, increase in the key distribution secrecy in quantum cryptography is 

associated with the increase in the dimensionality of Hilbert space for the states in use [1]; in 

this respect, certain hopes are pinned on the multi-level systems (qudits) [2, 3].  

The development of technology of such multidimensional quantum systems as qudits  

(quantum dits), which are an alternative to more traditional two-level systems, qubits, 

promise significant advantages in problems of quantum informatics and cryptography. In 

particular, the use of qudits allows one to demonstrate a stronger violation of the Bell 

inequalities compared to systems based on qubits, which is of fundamental importance for 

quantum physics and quantum theory of information [4,5,6,7]. Much applied interest in 

qudit systems also comes from their possible use in quantum cryptography in key 

distribution problems [8,9]. 

Multilevel quantum systems prove to be more robust against unavoidable noise in  

communication channels. At the same time, the technology of preparation and measurement 

of qudits seems to be much more technically complicated than in the case of qubits. Efficient 

application of multilevel quantum systems in quantum cryptographic protocols requires 

secure complete high-precision control over quantum states. The possibility of such a high-

precision control over three- and four-level single-mode polarized quantum states of 

biphotons was experimentally demonstrated for the first time in [10,11,12,13,14]. 

All these implementations belong to the art of the modern experimental technique and 

demonstrate the development of those quantum information branches relating to the practice. 

However, note that successful manipulation with quantum states implies the ability to 

control three important stages: state preparation, its transformation, and measurement.  

Quantum computation and communication systems should ensure the technology of 

preparation, transformation, and measurement of signals of a specific quantum-mechanical 

nature. The quantum signal determined by the vector of state in an abstract Hilbert space 

differs in principle from signals of the classical nature. An important distinctive feature of 

quantum signals compared to classical ones is the fundamental necessity of statistical 

description of their behavior. Technologically, the quantum state is determined by the 

procedure of its preparation. Such a procedure is termed the protocol. The protocol for the 

preparation of the quantum state specifies the quantum statistical ensemble that corresponds 

to it. This ensemble determines the potential possibility of generating an arbitrarily large 

number of representatives that are close to each other (ideally, identical). The  measurement 

of an individual quantum object leads to a change in its quantum state (the wave function 

reduction); however, the experimenter deals not with a single object but with a large set of 

representatives of the quantum statistical ensemble. This particular feature leads to the 

situation that the traditional measurement procedures are necessarily replaced by measuring–

computational algorithms, with the help of which experimentally obtained statistical data are 

subjected to a special mathematical processing aiming at reconstructing the parameters of 

the quantum state under study [15]. 

The methods of quantum tomography relate closely to the procedure of the classical 

tomography [16]. In [17] the technique of quantum tomography for the Wigner function 

based on the Radon transformation was suggested. A quantum-state reconstruction using the 

least-squares method was performed in [18]. The strategy of the maximal-likelihood method 

was suggested in Refs. [19,20]. Note that the maximal-likelihood method in the form which 
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automatically recovers the density matrices for a physical state (a density matrix must be 

Hermitian, positive, and semidefinite and have the unity trace) was developed in [21,22]. 

 The advantages of the root estimation method are based on the ability to reconstruct 

the states in the Hilbert space of high dimensionality. The method is asymptotically 

effective, so it allows one to reconstruct the states with an accuracy that is most close to the 

accuracy achievable in principle. That is why the formalism applied to the unknown 

quantum states allowed us to formulate and experimentally check the fundamental statistical 

limits of the accuracy of state reconstruction [15,23,24].  

The complete high-precision control over a quantum state requires taking into account 

statistical fluctuations and instrumental errors that arise in the course of realization of 

measuring–computational algorithms. The statistical fluctuations are connected with the 

fundamental quantum nature of the states under investigation and arise because the number 

of representatives of the quantum ensemble subjected to measurement is finite. As the 

observation time increases, the measurement process destroys the quantum states of an 

increasingly greater number of the ensemble representatives. Correspondingly, more and 

more exact information on the quantum state is extracted (the level of statistical fluctuations 

in the estimation of the vector of the quantum state becomes increasingly smaller) [25,26]. 

However, the accuracy level of the control over a quantum state cannot be arbitrarily high 

because of the occurrence of unavoidable technological restrictions and instrumental errors 

related to them (such as errors of the angle setting and errors of the parameters of 

polarization instruments, noise in the photon detection system, unstable operation of the 

pump laser, etc.) [27]. The theoretical consideration performed and the results of the 

mathematical modeling make it possible to determine technological requirements to the 

parameters of an experimental setup that are necessary for the secure high-precision control 

over the quantum state. The results of this study are important for the efficient practical 

realization of the elements and protocols of qudit- based quantum informatics. 

 

1. Fisher information matrix and state estimator 

 
A psi-function considered further is a mathematical object of statistical data analysis. 

The introduction of the psi-function implies that the “square root” of the probability density 

is considered instead of the probability density itself. 

( ) ( )2xxp ψ=  

 Let the psi function depend on s  unknown parameters 110
,...,,

−s
ccc  (according to 

quantum mechanics, the basis functions are traditionally numbered from zero corresponding 

to the ground state). The parameters introduced are the coefficients of an expansion in terms 

of a set of basis functions. Assume that the set of the functions is orthonormal. 

For the sake of simplicity, consider first a real valued psi function. Let an expansion 

have the form 

( ) ( ) ( ) ( ) ( )xcxcxccx
sss 11110

2

1

2

1
......1

−−−

+++++−= ϕϕϕψ .    (1) 

Here, we have eliminated the coefficient ( )2

1

2

10
...1

−

++−=
s
ccc  from the set of parameters to 

be estimated, since it is expressed via the other coefficients by the normalization condition.  

 The parameters 121
,...,,

−s
ccc  are independent. We will study their asymptotic behavior 

using the Fisher information matrix [28-29]  
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( ) ( ) ( ) ( )dxcxp
c

cxp

c

cxp
ncI

ji

ij
,

,ln,ln

∂

∂

∂

∂
⋅= ∫  

 The fundamental significance of the Fisher information matrix consists in its property 

to set the constraint on achievable (in principle) accuracy of statistical estimators. According 

to the Cramer - Rao inequality [28-29], the matrix ( ) ( )1
ˆ Iθ θ

−

Σ −   is nonnegative for any 

unbiased estimator θ̂  of an unknown vector valued parameter θ . Here, ( )ˆθΣ  is the 

covariance matrix for the estimator θ̂ . The corresponding difference asymptotically tends 

to a zero matrix for the maximum likelihood estimators (asymptotic efficiency). 

 It is of particular importance for our study that the Fisher information matrix 

drastically simplifies if the psi function is introduced [23,24,30] 

( ) ( )
dx

c

cx

c

cx
nI

ji

ij
∂

∂

∂

∂
⋅= ∫

,,
4

ψψ

.                (2) 

 In the case of the expansion (1), the information matrix ij
I  is ( ) ( )11 −×− ss  matrix of 

the form 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2

0

4
c

cc
nI

ji

ijij
δ ,       ( )2

1

2

10
...1

−

++−=
s
ccc .                        (3) 

A noticeable feature of the expression (3) is its independence on the choice of basis 

functions. Note that only the representation of the density in the form 
2

ψ=p  results in a 

universal (and simplest) structure of the Fisher information matrix. 

 In view of the asymptotic efficiency of the maximum likelihood estimators, the 

covariance matrix of the state estimator is the inverse Fisher information matrix: 

( ) ( )cIc 1ˆ −=Σ                              (4) 

 Let us extend the covariance matrix by appending the covariance between the 0
c  

component of the state vector and the other components. In result, we find that the 

covariance matrix components are 

( )
jiijij

cc
n

−=Σ δ
4

1
  1,...,1,0 , −= sji .                         (5) 

From the geometrical standpoint, the covariance matrix (5) is a second-order tensor.  

Moreover, the covariance matrix (up to a constant factor) is a single second-order tensor 

satisfying the normalization condition. 

 In quantum mechanics, the matrix  

jiij
cc=ρ                                                     (6) 

is referred to as a density matrix (of a pure state). Thus, 

( )ρ−=Σ E
n4

1
,                                              (7) 

where E  is the ss×  unit matrix. 

 In the diagonal representation, 
+=Σ UDU ,                                                (8) 
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where U  and D  are unitary (orthogonal) and diagonal matrices, respectively. 

 As is well known from quantum mechanics, the density matrix of a pure state has the 

only (equal to unity) element in the diagonal representation. Thus, in our case, the diagonal 

of the D  matrix has the only element equal to zero (the corresponding eigenvector is the 

state vector); whereas the other diagonal elements are equal to 
n4

1  (corresponding 

eigenvectors and their linear combinations form a subspace that is orthogonal complement to 

the state vector). The zero element at a principle diagonal indicates that the inverse matrix 

(namely, the Fisher information matrix of the s -th order) does not exist. It is clear since 

there are only 1−s  independent parameters in the distribution. 

 The results on statistical properties of the state vector reconstructed by the maximum 

likelihood method can be summarized as follows. In contrast to a true state vector, the 

estimated one involves noise in the form of a random deviation vector located in the space 

orthogonal to the true state vector. The components of the deviation vector (totally, 1−s  

components) are asymptotically normal independent random variables with the same 

variance 
n4

1 . In the aforementioned 1−s -dimensional space, the deviation vector has an 

isotropic distribution, and its squared length is the random variable 
n

s

4

2

1−
χ

, where 
2

1−s
χ  is the 

random variable with the chi-square distribution of 1−s  degrees of freedom, i.e. 

( )( )
n

cc
s

4
,1

2

1
20

−

=−

χ

.                                         (9) 

 This expression means that the squared scalar product of the true and estimated state 

vectors is smaller than unity by asymptotically small random variable 
n

s

4

2

1−
χ

. 

 The results found allow one to introduce a new stochastic characteristic, namely, a 

confidence cone (instead of a standard confidence interval). Let ϑ  be the angle between an 

unknown true state vector 
( )0
c  and that c  found by solving the likelihood equation. Then, 

( )( )
nn

cc
ss

44
,1cos1sin

2

,1
2

1
2022 α

χχ
ϑϑ

−

−

≤=−=−= .            (10) 

Here, 
2

,1α
χ

−s  is the quantile corresponding to the significance level α   for the chi-square 

distribution of 1−s  degrees of freedom. 

 The set of directions determined by the inequality (10) constitutes the confidence 

cone. The axis of a confidence cone is the reconstructed state vector c . The confidence cone 

covers the direction of an unknown state vector at a given confidence level α−=1P . 

 Root estimator provides refined representations of such classical results as chi-squared 

criterion and Gaussian approximation of binomial distribution.  

Let 
s

ppp ,...,,
21

 be theoretical probabilities, and 
s

nnn ,...,,
21

 observed number of  points 

fitting in corresponding intervals. 

 Thus, root form of chi-squared criterion is [24]:  

( ) 2

1

2

2211
...4

−

=
⎥⎦
⎤

⎢⎣
⎡ +++−

sss
pnpnpnn χ .    (11) 
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 Eq.11 means that if probability distribution corresponds with the theoretical one, then the left 

value is random of chi-squared form with 1−s  degrees of freedom. Chi-squared standard form [28] 

follows from chi-squared criterion of the form (11) (as an asymptotic limit).  

  2=s  case corresponds to binomial distribution, and root-form approximation by normal 

distribution is:  

( ) ( )1,0~2
1221

Npnpn −       (12) 

where 1
21
=+ pp  nnn =+

21
, ( )1,0N - is a random value of standard normal form.  

Similar result of classical theory of probability is the Moivre- Laplace theorem (see [28]):  

( )1,0~

21

11 N
pnp

npn −

      (13) 

  It is easy to ensure that eq. 13 asymptotically follows from eq.12. Nevertheless, for finite 

sample size approximation form (12) provides better accuracy compared to classical result (13) [15]. 

  

2. Statistical analysis of mutually complementing experiments 

 
We have defined the psi function as a complex-valued function with the squared 

absolute value equal to the probability density. From this point of view, any psi function can 

be determined up to arbitrary phase factor ( )( )xiSexp . In particular, the psi function can be 

chosen real-valued.  

At the same time, from the physical standpoint, the phase of psi function is not redundant. 

The psi function becomes essentially complex valued function in analysis of mutually 

complementing (according to Bohr) experiments with micro objects [23,25]. 

 According to quantum mechanics, experimental study of statistical ensemble in 

coordinate space is incomplete and has to be completed by study of the same ensemble in 

another (canonically conjugate, namely, momentum) space. Note that measurements of 

ensemble parameters in canonically conjugate spaces (e.g., coordinate and momentum 

spaces) cannot be realized in the same experimental setup. 

 The uncertainty relation implies that the two-dimensional density in phase space 

( )pxP ,  is physically senseless, since the coordinates and momentum of micro objects 

cannot be measured simultaneously. The coordinate ( )xP  and momentum ( )pP
~

 

distributions should be studied separately in mutually complementing experiments and then 

combined by introducing the psi function. 

 The coordinate-space and momentum-space psi functions are related to each other by 

the Fourier transform 

( ) ( ) ( )∫= dpipxpx exp~

2

1
ψ

π
ψ ,  ( ) ( ) ( )∫ −= dxipxxp exp

2

1~
ψ

π
ψ .          (14) 

 Consider a problem of estimating an unknown psi function ( ( )xψ  or ( )pψ
~

) by 

experimental data observed both in coordinate and momentum spaces. We will refer to this 

problem as an statistical inverse problem of quantum mechanics [23,25,26] (do not confuse 

it with an inverse problem in the scattering theory). The predictions of quantum mechanics 

are considered as a direct problem. Thus, we consider quantum mechanics as a stochastic 

theory, i.e., a theory describing statistical (frequency) properties of experiments with random 

events. However, quantum mechanics is a special stochastic theory, since one has to perform 

mutually complementing experiments (space-time description has to be completed by 

momentum-energy one) to get statistically full description of a population (ensemble). In 
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order for various representations to be mutually consistent, the theory should be expressed in 

terms of probability amplitude rather than probabilities themselves. 

 Methodologically, the method considered here essentially differs from other well 

known methods for estimating quantum states that arise from applying the methods of 

classical tomography and classical statistics to quantum problems [31,32,33]. The quantum 

analogue of the distribution density is the density matrix and the corresponding Wigner 

distribution function. Therefore, the methods developed so far have been aimed at 

reconstructing the aforementioned objects in analogy with the methods of classical 

tomography (this resulted in the term “quantum tomography”) [16]. 

 In [17], a quantum tomography technique on the basis of the Radon transformation of 

the Wigner function was proposed. The estimation of quantum states by the method of least 

squares was considered in [18]. The maximum likelihood technique was first presented in 

[19,20]. The version of the maximum likelihood method providing fulfillment of basic 

conditions imposed of the density matrix (hermicity, nonnegative definiteness, and trace of 

matrix equal to unity) was given in [21,22]. Characteristic features of all these methods are 

rapidly increasing calculation complexity with increasing number of parameters to be 

estimated and ill-posedness of the corresponding algorithms, not allowing one to find correct 

stable solutions. 

 The orientation toward reconstructing the density matrix overshadows the problem of 

estimating more fundamental object of quantum theory, i.e., the state vector (psi function). 

Formally, the states described by the psi function are particular cases of those described by 

the density matrix. On the other hand, this is the very special case that corresponds to 

fundamental laws in Nature and is related to the situation when the state described by a large 

number of unknown parameters may be stable and estimated up to the maximum possible 

accuracy. 

 Let us consider generalization of the maximum likelihood principle and likelihood 

equation for estimation of the state vector of a statistical ensemble on the basis of 

experimental data obtained in mutually complementing experiments. To be specific, we will 

assume that corresponding experiments relate to coordinate and momentum spaces. 

 We define the likelihood function as  

( ) ( ) ( )∏∏
==

=

m

j

j

n

i

i
cpPcxPcpxL

11

~
, .              (15) 

Here, ( )cxP
i

 and ( )cpP
j

~

 are the densities in mutually complementing experiments 

corresponding to the same state vector c . We assume that n  measurements were made in 

the coordinate space; and m , in the momentum one. 

 Then, the log likelihood function has the form  

( ) ( )∑∑
==

+=

m

j

j

n

i

i
cpPcxPL

11

~
lnlnln .          (16) 

 The maximum likelihood principle together with the normalization condition 

evidently results in the problem of maximization of the following functional: 

( )1ln −−=

∗

ii
ccLS λ ,                           (17) 

where λ  is the Lagrange multiplier and 

( ) ( )( ) ( ) ( )( )∑∑
=

∗∗

=

∗∗

+=

m

l

ljliji

n

k

kjkiji ppccxxccL
11

~~
lnlnln ϕϕϕϕ .      (18) 

Here, ( )p
i

ϕ~  is the Fourier transform of the function ( )x
i

ϕ . 
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 Hereafter, we imply the summation over recurring indices numbering the terms of the 

expansion in terms of basis functions. On the contrary, statistical sums denoting the 

summation over the sample points will be written in an explicit form. 

 The necessary condition 0
*

=
∂
∂

i
c

S
 for an extremum yields the likelihood equation 

1,...,1,0,     −== sjiccR
ijij

λ ,                  (19) 

where the R  matrix is determined by 

( ) ( )
( )

( ) ( )
( )∑∑

==

+=

m

l l

ljli
n

k k

kjki

ij
pP

pp

xP

xx
R

1

*

1

*

~

~~

ϕϕϕϕ

.                (20) 

 The problem (19) is formally linear. However, the matrix ij
R  depends on an 

unknown densities ( )xP  and ( )pP
~

. Therefore, the problem under consideration is actually 

nonlinear, and should be solved by the iteration method [23,24].  An exception is the 

histogram density estimator when the problem can be solved straightforwardly.  

Multiplying both parts of Eq. (19) by 
∗

i
c  and summing with respect to i , we find 

that the most likely state vector c  always corresponds to its eigenvalue mn +=λ  of the 

R  matrix (equal to sum of measurements). 

 An optimal number of harmonics in the expansion is appropriate to choose, on the 

basis of the compromise, between two opposite tendencies: the accuracy of the estimation of 

the function approximated by a finite series increases with increasing number of harmonics, 

however, the statistical noise level also increases. 

 The likelihood equation in the root state estimator method has a simple quasilinear 

structure and admits developing an effective fast-converging iteration procedure even in the 

case of multiparametric problems. The numerical implementation of the proposed algorithm 

is considered by the use of the set of Chebyshev-Hermite functions as a basis set of 

functions [15,23,24]. 

 The implication of the root estimator method to statistical reconstruction of optical 

quantum  states is considered in [10,11,12,13,14]. 

Examples of mutually complementing experiments that are of importance from the physical 

point of view are diffraction patterns (for electrons, photons, and any other particles) in the 

near-field zone (directly downstream of the diffraction aperture) and in the Fraunhofer zone 

(far from the diffraction aperture). The intensity distribution in the near-field zone 

corresponds to the coordinate probability distribution; and that in the Fraunhofer zone, the 

momentum distribution. The psi function estimated by these two distributions describes the 

wave field (amplitude and phase) directly at the diffraction aperture. The psi function 

dynamics described by the Schrödinger equation for particles and the Leontovich parabolic 

equation for light allows one to reconstruct the whole diffraction pattern (in particular, the 

Fresnel diffraction). 

In the case of a particle subject to a given potential (e.g., an atomic electron) and moving in 

a finite region, the coordinate distribution is the distribution of the electron cloud, and the 

momentum distribution is detected in a thought experiment where the action of the potential 

abruptly stops and particles move freely to infinity. 

In quantum computing, the measurement of the state of a quantum register corresponds to 

the measurement in coordinate space; and the measurement of the register state after 

performing the discrete Fourier transform, the measurement in momentum space. A quantum 
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register involving n  qubits can be in 
n

2  states; and correspondingly, the same number of 

complex parameters is to be estimated. Thus, exponentially large number of measurements 

of identical registers is required to reconstruct the psi function if prior information about this 

function is lacking. 

 

   

Fig. 1.a 

 

Fig. 1.b 

 

Fig. 1 Comparison between exact psi- function (solid line) and that estimated by a sample (dots); 

(a) real part, (b) imaginary part.  
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The state of quantum register is determined by the psi function 

ic
i

=ψ       (21) 

The probability amplitudes in the conjugate space corresponding to complementing 

measurements are 

jiji
cUc =~

      (22) 

The likelihood function relating to mn +  mutually complementing measurements is 

( ) ( )∏ ∏=

i j

m

jj

n

ii

ji

ccccL
** ~~

    (23) 

Here, i
n  and j

m  are the number of measurements made in corresponding states. 

In the case under consideration, the likelihood equation similar to (19) has the form 

i

j j

jij

i

i
c

c

Um

c

n

mn
=

⎥
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⎦

⎤

⎢
⎢
⎣

⎡
+

+
∑ *

*

* ~

1
    (24) 

An example of reconstruction of the state vector from the analysis of mutually 

complementary coordinate and momentum distributions is shown in Figure 1. We consider a 

quantum register: 9  qubits,  5122
9
=  states. In each experiment, the sample size is 

6
10  

representatives. This quantum state is reconstructed with the fidelity of  

9999073.0
2

0
== ccF . 

 

3. Process amplitudes and event generation intensity 

 

The approach based on the use of psi-function is limited, in general by problems of 

non-relativity quantum mechanics. A more general approach is based on implementing a 

scattering matrix (S-operator)) [34]. Rigorously, problems of light interaction with matter, 

and photon field reconstruction, in particular, must be considered in this formalism 

framework [10,12] 

Let S - operator that sets transformation of in-state to out-state. 

inout
SΦ=Φ       (25) 

Let out-state be decomposed with a set of basis states  

jc
jout

=Φ       (26) 

Experimental study of quantum out-state transits to the study of mutually 

complementary quantum processes. The processes’ amplitude is  

iSjM
ij
=       (27) 

Process amplitude square module specifies the intensity of event generation:   

jjj
MM *=λ      (28) 
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The event-generation intensity  j
λ   is the main quantity accessible for the 

measurement ( j
λ  is measured in frequency units (Hz).). The number of events occurring in 

any given time interval obeys the Poisson distribution. Therefore, the quantities j
λ  specify 

the intensities of the corresponding mutually complementary Poisson processes and serve as 

estimates of the Poisson parameters (see below). 

Although the amplitudes of the processes cannot be measured directly, they are of the 

greatest interest as quantities describing the fundamental relationships of quantum physics. 

From the superposition principle, it follows that the amplitudes are linearly related to the 

state-vector components. It is the purpose of quantum tomography to reproduce the 

amplitudes and state vectors which are hidden from the direct observation.  

In some sense, the process amplitude is the “root “ of the event generation intensity, 

likewise as ordinary psi-function is the “root” of probability density. 

The linear transformation of the state vector c into the amplitude of the process M is 

described by a certain matrix X . Then the set of all amplitudes of the processes can be 

expressed by a single matrix equation  

MXc =        (29) 

We call the matrix X  the instrumental matrix of a set of mutually complementary 

measurements, by analogy with the conventional instrumental function. The matrix X  is 

known a priori (before the experiment). Concrete examples of instrumental matrices applied 

to the problems of quantum optics can be found in [10,12,13,14,27]  

 In eq.29 state vector is proposed to be non-normalized. The usage of non-normalized 

vector releases us from inserting an interaction constant in (29). The vector c  norm, 

obtained as the result of quantum system reconstruction, provides information of total 

intensity of all the processes considered in the experiment. 

Now let us consider maximum likelihood estimator of state vector. The likelihood 

function is defined by the product of Poisson probabilities: 

( )
ii

i

t

i i

k

ii
e

k

t
L

λλ
−∏=

!
     (30) 

where i
k  is the number of coincidences observed in the i th process during the exposure 

time i
t , and i

λ  are the unknown theoretical event-generation intensities. 

The log likelihood (logarithm of the likelihood function) is, except for an insignificant 

constant,  

( )( )∑ −=

i

iiiii
ttkL λλlnln      (31) 

We also introduce the matrices with elements defined by the following formulas: 

∑=
i

isijijs
XXtI

*

      (32) 

3,2,1,    
*

==∑ siXX
k

J

i

isij

i

i

js
λ

     (33) 

The matrix I  is determined from the experimental protocol. We shall call it hermitian 

matrix of Fisher information. On the contrary, the matrix J  is determined by the 
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experimental values of i
k  and by the unknown event-generation intensities i

λ   Let us call it 

empirical matrix of Fisher information (see also Section 4). 

In terms of these matrices, the condition for the extremum of function (20) can be 

written as 

JcIc =        (34) 

whence it follows that 

cJcI =−1

      (35) 

We will call the latter relationship the likelihood equation. This is a nonlinear 

equation, because i
λ  depends on the unknown state vector c . Because of the simple quasi-

linear structure, this equation can easily be solved by the iteration method [23,24]. The 

operator JI 1−

 can be called quasi- identity operator. Note that it acts as the identical 

operator on only one vector in the Hilbert space, namely, on the vector corresponding to 

solution (35) and representing the maximum possible likelihood estimate for the state vector. 

The condition for existence of the matrix 
1−I  is a condition imposed on the initial 

experimental protocol. The resulting set of equations automatically includes the 

normalization condition, which is written as 

( )∑∑ =

i

ii

i

i
tk λ       (36) 

This condition implies that, for all processes, the total number of detected events is 

equal to the sum of the products of event detection rates into the exposure time.  

 

4. Statistical fluctuations of state vector of quantum system 
 

 As already mentioned before, state vector with undefined primary norm provides the 

most complete information of the system. Fluctuations of quantum state (and norm 

fluctuations, in particular) in a normally functioning quantum information system should be 

within certain range, defined by statistical theory. This section is devoted to that problem. 

Practical significance of accounting statistical fluctuations in quantum system deals 

with developing methods of estimation and control of precision and stability of quantum 

information system functioning, and also methods of detecting external interception to the 

system (Eve attack on the quantum channel between Alice and Bob). 

The estimate of the non-normalized state vector c , obtained by the maximum 

likelihood principle, differs from the exact state vector 
( )0

c  by a random value 
( )

ccc −=

0
δ . 

Let us consider statistical properties of the fluctuation vector cδ  by expansion of the log 

likelihood function near the stationary point. The expansion is as follows: 

( ) ⎥⎦

⎤
⎢⎣

⎡
++=−

jssjjssjjssj
ccIccKccKL δδδδδδδ

****

2

1
ln ,   (37 ) 

where together with the above (in (32)) defined hermitian matrix of Fisher information I , 

we define a symmetric Fisher information matrix K , which elements are defined by the 

following equation: 

∑=
ν

νν

ν

νν
λ

jssj
XX

M

t
K

2     (38) 

where 
ν

M  is the amplitude of the ν - th process. 
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K  in general case is a complex symmetric (non-hermitian) matrix. 

From all the possible fluctuations let us mark out the so-called gauge fluctuations. 

Infinitesimal global gauge transformations of a state vector are as follows:  

jj
cic  εδ = , sj ,...,2,1=      (39) 

where ε - is an arbitrary small real number, s - the Hilbert space dimension. 

Evidently, for gauge transformations 0ln =Lδ . It means that two states vectors that 

differ by a gauge transformation, are statistically equivalent (have the same likelihood). 

Such vectors are equivalent physically too (global state vector phase is physically non-

observable). From statistical point of view, the set of mutually complementing 

measurements should be chosen in a manner that for all the other fluctuations (except gauge) 

the equation (37) is strictly positive: 0ln >− Lδ . We shall call this inequality the statistical 

completeness condition of a set mutually complementing measurement. Let us obtain 

constructive criteria of statistical completeness of measurements. The complex fluctuation 

vector cδ  is convenient to be represented by a real vector of double length. Let us extract 

explicitly the real and the imaginary parts of the fluctuation vector 
( ) ( )21

jjj
cicc δδδ +=  and 

transit from the complex vector cδ  to the real δξ  
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     (40) 

In particular for qutrits ( 3=s ) this provides transition from 3-component complex 

vector to 6-component real vector. 

In the new representation the equation (37) is expressed in the form:  

δξδξδξδξδ HHL
jssj

−=−=ln ,    (41) 

where the matrix H  we shall call the complete information matrix. It is of the following 

block form: 

( ) ( )
( ) ( ) ⎟⎠

⎞
⎜
⎝

⎛
−−
+−+

=
KIKI

KIKI
H

ReIm

ImRe
    (42) 

Matrix H  is real and symmetric. It is of double dimension to matrices I  and K .  

Now for one it is easy to formulate the desired characteristic condition of mutually 

complementing measurement set completeness. For a set of measurements to be statistically 

complete, it is necessary and sufficient that one (and the only one) eigenvalue of the 

complete information matrix H  is equal to zero, while the other are strictly  positive.  

Notice that by checking the condition, one  not only verifies statistical completeness 

of a measurement protocol but also, insures that the obtained extremum is of maximum 

likelihood. 

Eigenvector that has eigenvalue equal to zero corresponds to gauge fluctuation 

direction (such fluctuations are of no physical importance as stated above). Eigenvectors 

corresponding to the other eigenvalues specify in Hilbert space directions that we shall call 

principle state vector fluctuation directions.  
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Principle  fluctuations variance is 

j

j
h2

12
=σ ,  12,...,1 −= sj     (43) 

where j
h  is the eigenvalue of the information matrix H , corresponding to the j -the 

principle direction. 

The most critical direction in Hilbert space is the one with the maximum variance
2

j
σ , 

while the eigenvalue j
h  is accordingly minimal. The knowledge of numeric dependences of 

statistical fluctuations allows researcher to estimate distributions of various statistical 

characteristics. 

The most important information criterion that specifies the general possible level of 

statistical fluctuations in quantum information system is the chi-square criterion. According 

to the stated above it can be expressed as:  

( )12~2
2

−sH χδξδξ      (44) 

where s is the Hilbert space dimension 

Equation (44) has the meaning that the left value, that describes the level of state 

vector information fluctuations is of chi-square distribution with 12 −s  degrees of freedom. 

The validity of the analytical expression (44) is justified by the results of numerical 

modeling and observed data (see [11,12]).  Similarly to (40) let us introduce the 

transformation of a complex state vector to a real vector of double length:  
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 It can be shown that the information carried by a state vector is equal to double total 

number of observations in all processes.   

nH 2=ξξ ,     (46) 

where ∑=

ν

ν
kn  

Then, the chi-square criterion can be expressed in the form invariant to the state vector 

scale (let us remind that we consider a non-normalized state vector).  

( )
n

s

H

H

4

12
~

2
−χ

ξξ

δξδξ
    ( 47) 

Equation (47) describes distribution of relative informational fluctuation. It shows that 

relative information uncertainty of a quantum state decreases with number of observations 

as n/1 . 

The mean value of relative information fluctuation is:  

n

s

H

H

4

12 −

=

ξξ

δξδξ
     (48) 
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As a measure of correspondence of a theoretical state vector and its’ estimate let us 

introduce a characteristic, that we shall call informational fidelity. 

ξξ

δξδξ

H

H
F
H

−= 1      (49) 

 Value H
F−1  we shall call informational loss.  

The convenience of informational fidelity H
F  is enclosed in its’ simpler statistical 

properties compared to the conventional one F . For a system where statistical fluctuations 

are dominant fidelity is a random value, based on chi-square distribution . 

( )
n

s
F
H

4

12
1

2
−

−=

χ
,     (50) 

where ( )12
2

−sχ   is a random value of chi-square type with 12 −s  degrees of freedom.  

Informational fidelity value asymptotically tends to unity with sample size growth, 

while informational loss tends to zero. Complementary (to statistical fluctuations) noise 

decreases informational fidelity level compared to the theoretical level (50).  

The examples of applying the theory to quantum optical state reconstruction can be 

found in [10,11,12,13,14]. 

In [27] is considered a model that approximately takes into account instrumental 

errors in problems of precision reconstruction of quantum states. The model is based on the 

notion of coherence volume, which characterizes the quality of the experimental and 

technological realization of the measurement protocol of a quantum state. Various sources of 

instrumental errors that affect the reconstruction accuracy of quantum states are 

mathematically modeled. The objective of [27] is to systematically study the effect of 

various instrumental errors on the quantum state reconstruction accuracy. The study is 

performed by using as an example the protocol for the measurement of four-level 

polarization quantum states of biphotons that we experimentally realized in [14]. 

 

5. Root estimator and quantum dynamics 

 
Assume that the mechanical equations are satisfied only for statistically averaged 

quantities (the averaged Newton's second law of motion) 
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⎠
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    (51) 

Let us require the density ( )xP  to admit the root expansion [23,24] ( s  components), 

i.e., 

( ) ( )( ) ( )( ) ( )( ) 22
2

2
1

... xxxxP
s

ψψψ +++= ,    (52) 

where 
( )( ) ( )( ) ( )xtcx j

l

j

l
ϕψ =  sl ,..,1=     (53) 

We will search for the time dependence of the expansion coefficients in the form of 

harmonic dependence 
( )( ) ( ) ( )tictc j

l

j

l

j ω−= exp
0 .     (54)  
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Then, Eq. (51) yields 
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   (55) 

Here, the summation over recurring indices  j  and k   is meant. The matrix elements 

in (55) are determined by the formulas 

( ) ( )dxxxxjxk jk ϕϕ   
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     (56) 
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U
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∂
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∂
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In order for the expression (55) to be satisfied at any instant of time for arbitrary 

initial amplitudes, the left and right sides are necessary to be equal for each matrix element. 

Therefore,  

( ) j
x

U
kjxkm kj r

r

∂

∂
=−

2

ωω      (58) 

 This expression is a matrix equation of the Heisenberg quantum dynamics in the 

energy representation (written in the form similar to that of the Newton's second law of 

motion). The basis functions and frequencies satisfying (58) are the stationary states and 

frequencies of a quantum system, respectively (in accordance with the equivalence of the 

Heisenberg and Schrödinger pictures).  

Indeed, let us construct the diagonal matrix from the system frequencies j
ω . The 

matrix under consideration is Hermitian, since the frequencies are real numbers. This matrix 

is the representation of a Hermitian operator with eigenvalues j
ω

, i.e., 

  jjH
j

ωh=        (59) 

Let us find an explicit form of this operator. In view of (59), the matrix relationship 

(58) can be represented in the form of the operator equation 

[ ]
2

ˆH Hx U
m

= ∂⎡ ⎤⎣ ⎦
h

,     (60) 

where 
ˆ

x

∂
∂ =

∂
 is the operator of differentiation and [ ] , the commutator. 

The Hamiltonian of a system 
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m
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h
      (61) 

is the solution of operator equation (60). 

Let us consider density matrix with the elements: 
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Basing on the above results one can easily derive the equation for density matrix 

dynamics, usually called quantum Liouville equation.  
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[ ]ρρ
,H

i

t h
−=

∂
∂

       (63) 

Thus, if the root density estimator is required to satisfy the averaged classical 

equations of motion, the basis functions and frequencies of the root expansion cannot be 

arbitrary, but have to be eigenfunctions and eigenvalues of the system Hamiltonian, 

respectively. 

 The relationships providing that the averaged equations of classical mechanics are 

satisfied for quantum systems are referred to as the Ehrenfest equations [35]. These 

equations are insufficient to describe quantum dynamics. As it has been shown above, an 

additional condition allowing one to transform a classical system into the quantum one (i.e., 

quantization condition) is actually the requirement for the density to be of the root form. 

 Thus, if we wish to turn from the rigidly deterministic (Newtonian) description of a 

dynamical system to the statistical one, it is natural to use the root expansion of the density 

distribution to be found, since only in this case a stable statistical model can be found. On 

the other hand, the choice of the root expansion basis determined by the eigenfunctions of 

the energy operator (Hamiltonian) is not simply natural, but the only possible way consistent 

with the dynamical laws. 

 

Conclusions 
 

 Let us state a short summary. 

 Search for multiparametric statistical model providing stable estimation of parameters 

on the basis of observed data results in constructing the root density estimator. The root 

density estimator is based on the representation of the probability density as a squared 

absolute value of a certain function, which is referred to as a psi-function in analogy with 

quantum mechanics. The method proposed is an efficient tool to solve the basic problem of 

statistical data analysis, i.e., estimation of distribution density on the basis of experimental 

data. 

 The coefficients of the psi-function expansion in terms of orthonormal set of functions 

are estimated by the maximum likelihood method providing optimal asymptotic properties 

of the method (asymptotic unbiasedness, consistency, and asymptotic efficiency). The 

introduction of the psi-function allows one to represent the Fisher information matrix as well 

as statistical properties of the sate vector estimator in simple analytical forms. Basic objects 

of the theory (state vectors, information and covariance matrices etc.) become simple 

geometrical objects in the Hilbert space that are invariant with respect to unitary 

(orthogonal) transformations. 

 A new statistical characteristic, a confidence cone, is introduced instead of a standard 

confidence interval. The chi-square test is considered to test the hypotheses that the 

estimated vector equals to the state vector of general population. 

 The root state estimator may be applied to analyze the results of experiments with 

micro objects as a natural instrument to solve the inverse problem of quantum mechanics: 

estimation of state vector by the results of mutually complementing (according to Bohr) 

measurements (processes). Generalization of the maximum likelihood principle to the case 

of statistical analysis of mutually complementing experiments is proposed. 

On the basis of fundamental statistical principles, the theory of statistical fluctuations 

of quantum system state vector is developed. The concept of Fisher informational matrix for 

a set of mutually- complementing quantum processes is introduced. The condition for 

statistical completeness is formulated. A comparison of the reconstruction results with the 
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fundamental statistical level of accuracy can serve as a basis for some problems such as the 

set-up adjustment, operation stability control, revelation of foreign interference in the 

quantum system, etc. 

 It is shown that the requirement for the density to be of the root form is the 

quantization condition. Actually, one may say about the root principle in statistical 

description of dynamic systems. According to this principle, one has to perform the root 

expansion of the distribution density in order to provide the stability of statistical 

description. On the other hand, the root expansion is consistent with the averaged laws of 

classical mechanics when the eigenfunctions of the energy operator (Hamiltonian) are used 

as basis functions. Figuratively speaking, there is no a regular statistical method besides the 

root one, and there is no regular statistical mechanics besides the quantum one. 
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We represent the economy method of separation of the entangled states of GHZ and W
types which arise in the process of association of a single molecule. It makes possible to
separate these types of quantum states in the simulation of real processes like the association
of molecular ion of hydrogen by means of existing computers with the strictly limited memory.
Numerical realization of this method is in process; we represent the semiclassical part of it,
that is based on Landau-Ziner description of the association of molecules. Results of statistical
processing of the row of numerical experiments are shown.

1. Introduction and background

The rapid development of quantum computing in the past twenty years reveals two
main tensions. The first: maintaining of the QC technology and theoretical support
in the construction of quantum processors, and the second: elaboration of program-
ming tools and media for the main aim of QC project: the simulation of real many
particle quantum processes (see [1],[2],[8]). In the second direction we must find the
best algorithmic surrounding of a quantum processor that makes possible to outper-
form the velocity of classical supercomputers in the simulation problems (see [3],[4]).
For this aim we need to determin in details which computational tasks in quantum
dynamics really require quantum computer, and which can be fulfilled effectively
without it. For example, we can mention that entanglement cannot serve as the cri-
terion of that QC exclusively is needed for the quantum state description ([9]). Many
entangled states can be easily described by the c! lassical computational means, the
most known example is GHZ and W states ([12]). To find such computational terms
one needs to exploit the idea of grained space ([5],[6]), and use the more advanced
algorithmic ideas. We note that algorithm approach cannot be reduced to the naive
idea (see [7]) of the replacement of exact mathematical solutions to the fuzzy simple
forms of mechanical representation. The idea of algorithmic approach is found on
the valid fundament of the constructive mathematics.

Nevertheless, to realize it practically we need the reliable and, as possible, sim-
ple simulating programs that would use the ideas of classical simulation as well as

∗The work is supported by Fond of NIX Computer Company grant # F793/8-05, INTAS grant
04-77-7289 and Russian Foundation for Basic Research grant 06-01-00494-a.
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quantum approach. The main obstacle in QC technology - decoherence - can be rep-
resented in the computer simulation as the severe limitation of the classical memory
(see [3], [4]).

In this paper we represent one simple method of simulation of the scattering
reactions which can help us to determin quantitatively the role of entanglement in
chemistry.

2. GHZ and W states and its role in chemistry

We choose GHZ and W states as the most known example of states with the highest
level of entanglement which at the same time plays the serious role in chemistry. GHZ
states represent the quantum motion of a molecule as a whole, and W states represent
the internal oscillations of the separate atoms in a molecule. It is worth noting that
we focuse only on these embodiment of two abstract types of quantum states, whereas
they have also the other realizations: entanglement of the excited states of ions in
Paul trap, Cooper pairs of electrons in superconductors, etc. Chemical reactions give
the reach area where the application of quantum entanglement is very important.
The absence of a robust computer simulator of chemical reactions evidences about
the crucial role of quantum entanglement in the dynamics of association of molecules.

These quantum states have the form

GHZ : λ1|11 . . . 1〉 + λ2|22 . . .2〉 + . . .+ λk|kk . . . k〉,
W : λ1|100 . . . 0〉 + λ2|010 . . .0〉 + . . .+ λk|00 . . .1〉. (2.1)

We introduce the measure of entanglement of the state Ψ of bipartite system S =
= S1∪S2, S1∩S2 = ∅ as von Neyman quantum entropy EΨ,S1,S2

= Tr(ρS2
ln ρS2

) =
= Tr(ρS1

ln ρS1
) for partial density matrix ρS2

. For a system S with many parts we
define the measure of entanglement as

EΨ = minS1,S2: S=S1∪S2, S1∩S2=∅EΨ,S1,S2
. (2.2)

The different entangled measure are known, for example, Akulin measure of
tanglemeter (see [9]), but for our aims here it is not significant.

These states is have the maximal measure of entanglement in some vicinity of
them in Hilbert space. Hence, the practical fabrication of such states is important for
quantum computers and inforation processing. These states are already fabricated in
experiments with ions in Paul trap. We will show how these states can be selected by
simple and economical algorithm in course of the simulation of process of molecule
association.

3. Problem of quantum state selection

Here we define the process of the selection of quantum states in the numerical ex-
periments. We start with the semiclassical description of the process of scattering of
one abstract particle, called the bullet, on the other, called the target. We always
write the parameters of them in this order.
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One separate particle can be classically represented as the point with some
atributes (mass, charge, spin, etc.). This representation is called a (classical) sample
of the particle. A sample has its own trajectory as a classical particle. If we treat
the particle as the quantum one, it means that we represent it as the ensemble of its
classical samples. The density of samples is given by

ρ(x̄) = lim
δx−→∞

N(x̄, δx)

δx3
. (3.1)

The main property of density which connect it with quantum mechanics is Born
rule:

|Ψ(x̄)|2 = ρ(x̄). (3.2)

In principal, the last equation can be chosen as the definition of ensemble rep-
resentation of the wave function. This is sufficient for the representation of quantum
dynamics via Feynman path integrals. We suppose that each sample moves along its
own trajectory and scopes the amplitude λ depending on the action of this sample
according the formula

λ(t1) = e
−

iS(γ,t0,t1)

h , S(γ, t0, t1) =

t1∫

t0

(Ekin − Epot)dt, (3.3)

where Ekin, Epot is the kinetic and the potential energy of the sample. The resulting
wave function is calculated by the summing of all amplitudes λ on all samples which
occure in the small vicinity of the corresponding point in the corresponding time
instant (see [10]).

Alternatively, we can use the mechanism of dynamical diffusion on the ensem-
ble of samples. This mechanism includes the change of impulses between the near
neigboring samples which otherwise preserve their speeds. The dynamical diffusion
mechanism ensures the admissible approximation of quantum dynamics after the fix-
ation of appropriate grain of spatial resolution (see [3]). At last we could choose
the other algorithm for determiming of individual trajectories: from the method of
quantum pseudo potential (see [11]), to the semiclassical representation of separate
particles as the wave packages of Gauss form (see [12]). We agree that the choice of
individual trajectories for the separate samples are somehow chosen.

We now consider the joint state of two real quantum particles: the bullet and
the target in the framework of quantum Hilbert formalism for many particles. In
Hilbert quantum formalizm it has the general form

∑

j,l

λj,l|x̄j , x̄l〉 (3.4)

where |x̄j〉 and |x̄l〉 are the coordinates of the target and bullet correspondingly.
The pair |x̄j , x̄l〉 is the basic state of the joint system, formed by the bullet and the
target. Unitary evolution of this system determined by Shroedinger equation contains
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two operators acting sequentially at each time frame: the operator of kinetic energy

(− h2

2m
∆bul)

⊗
(− h2

2m
∆tar), where Laplace operators ∆ act independently to each of

our two particles, and the operator of potential energy V (x̄bul, x̄tar) that acts on both
particles simultaneously.

For the ensemble representation of quantum evolution it means that the action of
operator of the kinetic energy must be ensured by internal process in the ensembles of
samples corresponding to the bullet and to the target separately, whereas the action
of the operator of the potential energy must be ensured by the interaction between
the samples belonging to the different ensembles.

We assume that the model of evolution in the separate ensemble of the samples is
such that we can trace the trajectory of each sample (Feynman path integrals do not
completely satisfy this condition, but it can be modify by the artificial details to fit
it). We then can choose randomly one sample from one ensemble, the second sample
from the second ensemble, and follow their history that includes the independent
influence from the other samples of these ensembles to each chosen sample, and
interactions between these two samples only. In the other words, all interactions
between two real quantum particles can be reduced to the interactions inside of one
pair of its samples chosen randomly. If L is the total number of the samples in each
ensemble, we have L2 possible pairs of two samples. For n real quantum particles we
will have corteges of the form a1, a2, . . . , an of their samples instead of the pairs. If
the number of real particles grows the number of all corta! ges grows as Ln that is
the reflection of the main computational problem of quantum theory of many bodies.

Therefore, for the computer simulation of quantum many body dynamics the
following problem arises: how to select the ”significant” corteges a1, a2, . . . , an of
the samples which gather the bulk of amplitude. Let B be the set of all cortages
a1, a2, . . . , an. The selection problem is then to find the small (not exponentially
large) subset B ⊂ B such that

∫
B

|Ψ(x̄)|2 dx̄ > 1− ǫ for the chosen error probability ǫ.

We call the finding of such set B the problem of state selection. In case when the
valuable part of B consists of entangled states of some type Z, the problem of state
selection can be called the problem of selection of states of type Z. If for some class
of quantum many body evolutions, foor its states Z the set B can be obtained by
some effective algorithm, we say that for the class Z the problem of state selection is
solved constructively. Here we assume that the initial set of states for the evolutions
from Z are simply designed (can be obtained by the effective — polynomial time
classical algorithms).

We note that the problem of state selection not mandatory has the solution for
every reasonable quantum evolution in the whole Hilbert space. For example, it is
certainly unsolvable for the fast quantum algorithms, which the key property is the
distribution of the amplitude among the exponentially large number of states. Fast
quantum algorithms is not the sole example: even for Walsh-Hadamard transform
H
N

n for Hadamard operatorH this distribution of amplitude takes place. Neverthe-
less, we have reasons to expect that for some kinds of quantum evolution the selection
problem can be solved constructively. One of such a class is the class of quantum
mechanical systems which Lagranjian has the quadratic form L = āx̄2 + b̄x̄x̄t + c̄x̄2

t
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of coordinates and impulses (for example, the system of quantum pendulums). It is
proved in [10] that for such systems all trajectories with significant deposit to the
amplitudes are classical ! trajectories, that immediately gives us the effective method
of state selection, because we simply have to trace all trajectories generated by the
easy algorithm.

Problem of state selection is important also for quantum computing. Its solu-
tion establishes the specific upper bound for the quantum evolutions which yet can
be simulated classically, e.g. the simulation of evolutions lying beyond this border
requires quantum computer. Up to nowadays, fast quantum algorithms represent
engenious constructions, and by solving of the state selection problem we could try
to find the more practical examples of fast quantum evolutions which themselves can
serve as fast quantum subroutine in the simulation of complex systems. Such quan-
tum subroutine can be found among the evolutions which do not admit the effective
state selection.

4. Robust algorithm for quantum state selection

We now show how the problem of quantum state selection can be solved for the wide
class of quantum evolutions. We will not define this class exactly, this is the subject
of the further work. The robustness of our algorithm lies in its simple form and
conveniency for programming.

We describe the algorithm on our simple example with the bullet and the target.
We start from the subset B0 ⊂ B that is obtained by the randomply chosen partner
a — the sample of the target for each sample of the bullet b. This set B0 represents
nonentangled state which we initially have in the starting point. We have B0 =
= {(a1, b1), (a2, b2), . . . , (an, bn)}.

Let us consider the evolution operator which acts on B0 naturally:

B0 −→ B1 = B̃0 = {(ã1, b̃1), (ã2, b̃2), . . . , (ãn, b̃n)}. (4.1)

We now group all the pairs from B1 in the several quantity of groups: Γ1,Γ2, . . . ,
such that for every j = 1, 2, . . . , s ‖aj − ãj‖ + ‖bj − b̃j‖ < ǫ0 and ‖v(aj) − v(ãj)‖ +

+‖v(bj)−v(b̃j)‖ < ǫ1for some small ǫ0, ǫ1 > 0, where v(a) denotes the velocity of the
sample a. In the other words we join together the pairs of samples which has close
spatial positions and close velocities. We then choose from the groups Γj m groups:
Γj1 ,Γj2 , . . . ,Γjm

such that they have more than n0 elements whereas the rest groups
have less than n0 elements for some n0 < n. We call the pairs from the chosen m
groups the selected pairs. The total number ñ of all pairs aj , bj is now decreased
comparatively with the total number n of pairs in the set B0.

To reimburse the total number of pairs we add n − ñ new pairs (ã, b̃) to the
selected pairs. This can be done differently; the canonic way to do it is called the
cross-over. The cross-over procedure means that we generate the new pairs from the
selected ones by the exchange of the samples between two arbitrary chosen pairs,
e.g. we generate the pairs ã2, b̃1 and ã1, b̃2 from the pairs ã1, b̃1 and ã2b̃2. Small
discrepancy with the former total number n of the pairs can be overcome by the
random choise of the pair we add to the joint ensemble.
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We then repeat this procedure many times and obtain the sequence

B0, B1, . . .

of the sets consisting of the pairs of samples corresponding to our two real particles:
bullet and target. At the end of this sequence, determined by the time frame of
considered process, we have the final set of the pairs of samples that bring us the
approximation of the final quantum state.

We now show why this procedure of quantum state selection agrees with quan-
tum mechanical description of two particle evolution. We have to show that the
selected pairs bear the prevailing part of quantum probability for two real particles
in comparison with the pairs excluded from the set B0 in the first step. Indeed,
for the selected k pairs the amplitudes they bear in sense of Feynman path inte-
grals are close and the total probability to find the real pair (bullet, target) in the
corresponding spatial position is about

|
k∑

j=1

1
n | = k

n, (4.2)

die to the constructive interference of amplitudes, whereas for the not close (in the
position and velocity) elements with the same total number k the probability to find
the real pair (bullet, target) in the area corresponding to the positions of these k
pairs will be about

|
k∑

j=1

αk
n | ≈

√
k
n , (4.3)

that is much less than k
n for large k. It follows from that the phases which are

associated with the samples are distributed randomly for the pairs from the different
groups. It means that the selection process works well if the number of all samples is
large. Practically, it must be large enough to recognize the important features in the
behavior of our real system, for example, the interference of the pair (bullet, target)
as the whole through two slits, etc.

The main adventage of the selecting algorithm is that it requires only the initial
set of samples, whereas if we describe the evolution along the way of Hilbert formal-
ism, it needs the exponentially large amount of memory. The cost of this economy
is that fast quantum algorithms are out of this way of simulation, as well as the
quantum processes distributing the amplitude among too large space area without
its valuable concentration. Quantum entangled states of types GHZ and W satisfiy
this condition. This is why the selection of states of these two forms must be our
first aim.
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5. Numerical simulation of two-particle resonance scattering.
H2+ molecular ion creation

5.1. The definition of the problem

Let’s consider numerical simulation concerning with reaction of molecular ion cre-
ation in two particle scattering reaction. Both interacting particles are considered
to be classical during almost all scattering process. In the simplest case one of these
particles is Hydrogen atom and the other is proton.

One of the possible theories describing quantum transformations in two-particle
collisions is Landau-Zener theory. These authors considered the problem of intersec-
tion and quasi-intersection of adiabatic terms of quasi-molecule, which consist of two
atomic particles. They also considered quantum transitions during particles motion
along these terms.

The term “quasi-molecule” means that the atomic particles are considered to
be parts of the molecule independently on the distance between these particles. The
description of that process in terms of quasi-molecules takes place when adiabatic
approximation is correct.

5.2. Adiabatic levels, adiabatic (quasi-molecular) wave func-
tions. Nonadiabatic operator

Adiabatic approximation takes place when velocities of nuclei are small enough (in
comparison with electron’s velocity), so that electron is considered to be in ”motion-
less” nuclei environment (at any distance between nuclei). When this approximation
comes true electronic and nuclei variables can be considered separately. Adiabatic
energy levels which can be considered as function of the distance between atomic
particles can be obtained as well. Nuclei motion is considered to be classical and
is caused by potential, which equals to the sum of adiabatic energy and Coulomb
interaction between nuclei.

Since adiabatic approximation has definite limit (the relative velocity of nuclei
must be small enough, as it is described above, and large enough to consider nuclei
motion classically), there are definite probability for quantum transition between
adiabatic levels. These transitions are called nonadiabatic transitions. They are
governed by nonadiabatic operator which in the typical case constitutes a derivation
operator (by inter-particle distance).

To summarize the above, we can say that there is the basis of adiabatic (quasi-
molecular) wave functions which corresponds to their eigenvalues - energies which
depends on the distance of interacting particles.

5.3. Diabatic levels, diabatic (atomic) wave functions. Quasi-
crossing of adiabatic terms

Adiabatic basis can be derived form so called diabatic states - i.e. pure atomic
states. In our case diabatic states correspond to electron localization on first (or
second) particle correspondently.
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Let’s consider two diabatic states which correspond to electron’s state 1S (when
electron is localized in the field of given particle). There is standard procedure for
obtaining the matrix of the Hamiltonian and then diagonalizing that matrix.

H =

(
H11 H12

H21 H22

)
(5.1)

Here Hij is matrix element of two states Hamiltonian calculated between i and
j diabatic states. H12 is considered to be constant - V .

After diagonalization of Hamiltonian we obtain the following:

H̃ =

(
H̃11 0

0 H̃22

)
(5.2)

Here H̃αβ is matrix element of two states Hamiltonian calculated between α

and β adiabatic states. Diagonal elements of H̃αβ represent correspondent adiabatic
terms EI(R), EII(R)

H̃11 = EI =
H̃11 + H̃22

2
+

√√√√(H̃11 − H̃22)
2

4 − V 2
(5.3)

H̃22 = EII =
H̃11 + H̃22

2
+

√√√√(H̃11 − H̃22)
2

4 − V 2
(5.4)

Considering the region where diabatic terms cross we see that adiabatic terms
avoid crossing. So we can say that adiabatic terms form quasi-crossing

According to von Neumann’s theorem adiabatic terms of the same symmetry
can’t cross. Only the terms with different symmetry can cross. The region of quasi-
crossing of adiabatic terms is the region of critical interest in Landau-Zener theory
because quantum transitions take place when nuclei move along this region.

5.4. Landau-Zener theory for quasi-crossing adiabatic terms.

The two particle system can be investigated using Landau-Zener theory when it is
possible to point out the isolated point of diabatic terms crossing. In that model the
off-diagonal element of Hamiltonian matrix is considered to be constant. Particles
move along the adiabatic terms up to the quasi-crossing region. The probability of
nonadiabatic quantum transition is calculated in the quasi-classical limit by evalu-
ation of integral of quasi-classical wave function’s product. These wave functions
correspond to initial and final adiabatic levels of nuclei in the quasi-crossing region.

P =

∫
e−i

R
∞

0
(EI(R)−EII(R))dtdR (5.5)

The asymptotic exponential limit of quantum transition probability can be evalu-
ated by considering the complex values of distance between particles. Thus adiabatic
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terms can cross when imaginary part of distance is nonzero. Such crossing is essential
feature of adiabatic term. Probability of quantum transitions in the above problem
can be obtained by analysis of position of such crossing only.

5.5. Resonance quantum transitions during two particles scat-
tering — the absence of quasi-crossing. Soloviev’s model

Reactions (quantum transitions) during resonance and quasi-resonance scattering
can not be considered using Landau-Zener model. This is impossible to point out
the quasi-crossing region for the quasi-molecule in this case. Figure 1 indicates the
essential features of adiabatic terms. Terms merge at large (infinite) distance, so
quasi-crossing region is absent for reaction of this type.

e

D

-2

U
äà  ë

eu

R

D

2

eg

Fig. 1. Adiabatic terms for quasi-molecules which consists of 2 identical atomic particle and

one valent s-electron.[15]

Here term ǫu corresponds to anti-symmetric combination of wave functions, ǫg
corresponds to symmetric combination, ∆ - exchange coupling. Electron wave func-
tions of g and u state are stated below:

Ψg = (ψ1 + ψ2)/
√

2 (5.6)

Ψu = (ψ1 − ψ2)/
√

2 (5.7)

Here ψ1 and ψ2 are electron atomic wave functions which correspond to 1S
electron state of first (or second) particle correspondently.

These wave functions are exact wave function of system considered in the adi-
abatic limit. Transitions between correspondent adiabatic terms take place due to
exchange coupling only.

This is necessary to consider such system using theory described in rev. Ac-
cording to this theory there are two series of quasi-crossing in the case of resonance
scattering (crossing when the distance between particles is considered having imagi-
nary part). Using the rev terminology one of these series is called S-seria and the other
is called T- seria. In the region corresponding to S-seria there are quasi-crossing of
adiabatic terms with the different main quantum number and with the same quantum
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numbers of angular moment and it’s projection: Enlm(R) n + 1lm(R) consequently
for every n >= l + 1.

In the case of T-seria, quasi-crossings corresponding to terms with different
quantum numbers of angular moment and its projection take place.

Figure 2 depicts S-seria and T-seria. S-seria looks like dot because of scale
discrepancy.

Im R

10

5

Re R

T000

(1 5 )s gs s-

(2 4 )p fs s-

(1 3 )s ds s-

Sss Sps

105

Fig. 2. S-seria and T-seria of quasi- adiabatic terms crossing for H2+ molecular ion [14]

Physically this picture of electron behavior means that there are two character-
istic lengths (which belong to different series of quasi-crossing) in considered system:
Rs and Rt.

When inter-particle distance becomes equal to Rt, electronic wave function is
changed dramatically. It corresponds to the process when electron (considered classi-
cally), which initially moved in the vicinity of one-well potential, becomes affected by
double-well potential. Quantum mechanical transformations in this case correspond
to initial angular moment distribution over all set of angular moments.

When inter-particle distance becomes equal to Rs, transitions with change of
main quantum number take place. In connection with this the following ”classical”
analogy can be done: in that region the relaxation of electron energy over the total
set of main quantum number take place.

Figure 3 depicts the electronic processes and correspondent spatial region.
The Figure 4 depicts the plots of adiabatic terms for molecular ion H2+. The Rs

region corresponds to sharp promotion of diabatic term to the continuous spectrum.
These regions depend on angular momentum of electron.

5.6. Numerical simulation of reaction of molecular ion creation.
Algorithm.

In the numerical simulation the resonance two particle scattering problem was inves-
tigated. One particle of interest was simplest atomic particle (nucleus plus electron)
and another particle was positive ion (nucleus). There were two extra parameters in
numerical experiments, which correspond to Rt and Rs from the above consideration.

We are interested in the integral characteristics of process:

1. (Reactions)/(Total experiments) ratio as function relative velocities.
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Fig. 3. The regions of electron motion classically permitted during molecular ion cre-

ation [14]
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Fig. 4. Adiabatic terms (solid) and diabatic terms (dashed) for H2+ molecular ion [16]

2. Reactions profile distribution.

3. Reactions threshold.

Below are listed the essential features of program algorithm used

1. The sets of numerical experiments were performed. Each set of experiment was
configured separately. In each experiment, belonging to the given set, impact
parameter slightly differed from one of previous experiment. Initial velocities
were constant along all experiment set. Then the next set of experiments was
executed with the other value of initial velocities. And so on.
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2. Initially (when inter-particle distance R was greater then Rt) (R > Rt) po-
tential of inter-particle interaction (i.e. adiabatic term) was considered to be
equal U1.

3. When moving particles initially becomes closer then Rt, but farther then Rs

(Rt < R < Rs) potential was considered to be equal still U1. Reaction did not
take place.

4. When distance between particles becomes equal Rs potential was considered
to be equal still U2 — reaction occurred.

5. Particles moved under influence of potential U2 — (i.e. particles performed
molecular ion) until inter-particle distance becomes equal Rt again. After that
potential becomes equal U1 — (i.e. reaction of dissociation took place).

5.7. Results

The aim of experiments was to demonstrate quality behavior of two-particle resonance
scattering influenced by quantum transitions. So all characteristic values used in
experiments (i.e. potential constants, mass, lengths, velocities etc.) were not in
correspondence with real world constants.

Potentials considered were the functions of inter-particle distance R only.
U1 was chosen as standard ion — atomic potential in a long distance limit:

U1 = − α
R4

(5.8)

U2 — harmonic potential in a form:

U2 = k(R−R0)
2 + U0 (5.9)

Constants α, k, R0, U0, Rt, Rs were chosen 2.0, 10.0, 1.0, -5.0, 1.85, 1.8.
Every experiment in every set takes 5000 steps. Impact parameter step ρs was

0.04. In every experiments in the set impact parameter was incrementally increased
by ρs from 0 (in initial experiment) up to Nexp ∗ ρsin final experiment. Here Nexp is
number of total experiments in the given experiment set.

Constants Nexp, ρs were chosen 350 and 0.04 in every experiment set.
Initial inter-particle distance was chosen 15.0 in every set. Initial relative velocity

was constant in every experiment set and consequently changed from one experiment
set to the other.

Reaction profile means the following. During experiment execution there were
the situations when particles were (e.g.) first associated (A), then dissociated (D),
then once again associated (A). Such reaction is denoted as RADA or R3. Corre-
spondingly R1 means RA, R2 means RAD, R4 means RADAD, R5 means RADADA

and so on.
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Results of some experiment’s set are stated in the below tables.

Table 1. Initial relative velocity is 0.5.

Ri

Nexp TR R1 R2 R3 R4 R5 ρtr

350 220 176 36 8 0 0 8.76

Table 2. Initial relative velocity is 0.4.

Ri

Nexp TR R1 R2 R3 R4 R5 ρtr

350 241 187 44 8 1 1 9.6

Table 3. Initial relative velocity is 0.375.

Ri

Nexp TR R1 R2 R3 R4 R5 ρtr

350 247 201 35 10 1 0 9.84

Table 4. Initial relative velocity is 0.35.

Ri

Nexp TR R1 R2 R3 R4 R5 ρtr

350 252 209 34 8 0 1 10.04

Table 5. Initial relative velocity is 0.25.

Ri

Nexp TR R1 R2 R3 R4 R5 ρtr

350 266 214 43 8 1 0 10.06

Table 6. Initial relative velocity is 0.125.

Ri

Nexp TR R1 R2 R3 R4 R5 ρtr

350 253 193 59 2 0 0 10.12

Table 7. Initial relative velocity is 0.05.

Ri

Nexp TR R1 R2 R3 R4 R5 ρtr

350 224 187 37 0 0 0 8.92

In the above tables: Nexp — total experiments in the set, always equal 350.
TR — total reactions during set execution. This means that during experiment

execution reaction happened more than one time.
Ri — total number of reaction of given profile.
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In this article I would like to present a quantum algorithm that solves graph isomorthism
problem for two graphs with n vertices with complicity O((n!)2/5

·n2). It is a slightly changed
version of quantum search algorithm for element distinctness made by Andris Ambainis.

1. Introduction

This paper consists of 4 sections: Introduction, Ambainis algorithm overview, Al-
gorithm for graph isomorphism and Conclusion. We will begin with definitions of
our problems and some graph theory facts. In Introduction we will also discuss an
element distinctness and compare it with graph isomorphism problem.

Main problem: Let G1,G2 be two graphs. Check if they are isomorphic.
Note: Two graphs G1 = (V1, E1), G2 = (V2, E2) (V1, V2-sets of vertices, E1, E2-

sets of edges) are called isomorphic if there exists one-to-one correspondence(we will
call this correspondence ”target correspondence”) between thier sets of vertices, such
that for each pair v11, v12 ∈ V1 :

(v11, v12) ∈ E1 ⇒ (v21, v22) ∈ E2 and (v11, v12) /∈ E1 ⇒ (v21, v22) /∈ E2

where v21, v22 ∈ V2-vertices that correspond to v11, v12 respectively.
By default, later in text, we will consider our graphs to have same number of

vertices(if number of vertices differs then they aren’t isomorphic) |V1| = |V2| = n.
We will also consider that each of vertex sets V1, V2 has some default numeration of
vertices: V1 = (v11, v12, ..., v1n), V2 = (v21, v22, ..., v2n) and edge sets E1, E2 contain
pairs of vertex indexes not vertices.

Definition:(Graph renumeration) Let G1 = (V1, E1) be a graph(with default

numeration of vertices). G
(i1,i2,...,in)
1 = (V ′

1 , E
′
1) where v′11 = v1,i1 ; v

′
12 = v1,i2 ; ...;

v′1n = v1,in
, ik 6= il, k 6= l, ij ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., n} is called (i1, i2, ..., in)-

remuneration of graph G1( E1 is converted to E′
1 by changing indexes of vertices in

pairs, for example: (ik, il) → (k, l)).
Note: Any renumeration of a graph G is isomorphic to G and any graph

isomorphic to G is its renumeration becase all n! possible graph renumerations covers
all one-to-one vertex correspondances.

We can say that searching for target correspondence for G1, G2 is the same as

searching for renumerations G
(i1,i2,...,in)
1 = (V ′

1 , E
′
1) and G

(j1,j2,...,jn)
2 = (V ′

2 , E
′
2) of
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that graphs such that for each v′1i, v
′
1j ∈ V ′

1 : (v1i, v1j) ∈ (/∈)E′
1 ⇒ (v′2i, v

′
2j) ∈

(/∈)E′
2,where v′2i, v

′
2j ∈ V ′

2 .
Definition:(Incidence matrix) Let G = (V,E) be a graph, |V | = n. Matrix

AG =
{
aG

ij

}
∈ {0, 1}n×n

, where aG
ij = 1 ⇔ (vi, vj) ∈ E is called the incidence matrix

of G graph.
Note: If two graphs G1, G2 have same incidence matrixes, then they are iso-

morphic with target correspondence: v11 ↔ v21, v12 ↔ v22, ..., v1n ↔ v2n. As a result,

if two graphs G1, G2 have renumerations G
(i1,i2,...,in)
1 , G

(j1,j2,...,jn)
2 with same inci-

dence matrixes, then they are isomorphic with correspondence v1,i1 ↔ v2,j1 , v1,i2 ↔
v2,j2 , ..., v1,in

↔ v2,jn
.

We can define any renumeration of given graphG with one parameter:an ordered
set of different n indexes {1, ..., n}, so as we can code all such sets using numbers
from 1 to n! and each set will have an unique number, we can say that any graph
renumeration have one parameter - natural number from {1, ..., n!}. Let’s can define
a matrix AG(l) ∈ {0, 1}n×n

, l ∈ {1, ..., n!} - that is an incidence matrix of lth-
renumeration (renumeration with l parameter value) of graph G.

Now we are ready to define an oracle for our problem. At first we will define a
base oracle, that will be used to make a more complex oracle for our algorithm. Base
oracle is needed for easy comparison with other graph isomorphism algorithms.

Base oracle: Suppose we have graph G = (V,E) with incidence martix AG =
=
{
aG

ij

}
.

fG : |i, j〉 ⊗ |0〉 → |i, j〉 ⊗
∣∣aG

ij

〉

fG-base oracle for graph G.
Base oracle returns the smallest piece of information we can know about graph —

for two indexes it checks if they are connected with an edge.
Algorithm oracle: Suppose we have k graphs G1, G2, ..., Gk.

F : |i, l〉 ⊗ |q〉 → |i, l〉 ⊗
∣∣∣(q + ÃGi

(l))mod2n2
〉

where i ∈ {1, .., k} , l ∈ {1, ...n!} and ÃGi
(l) is an incidence matrix of l-renumeration

of graph Gi,that is written string by string in a line(so we have n2 of 0 and 1 in
answer register).

Note: To call algorithm oracle once we need to call base oracle n2 times.
Using this oracle we can run a Grover search algorithm to solve isomorphism

ploblem. We can do this by fixing incidence matrix of one of the graph and searching
for same matrix among all n! incidence matrixes of another graph. This gives us
O(

√
n!) of agorithm oracle calls or O(n2 ·

√
n!) base oracle calls. Grover algoprithm

doesn’t use additional information provided by the fact that objects it is searching
for are graphs. It searches for one paricular object in n! objets and doesn’t care of
their nature or features.

Let’s define an element distinctness problem.We need this definition to see how
we can apply the solution of this problem to isomorphism.

Element distinctness: Suppose we have a numbers:

x1, x2, ..., xN ∈ {1, ...,M}
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check if they are all distinct.
Now we can reveal the main idea of graph isomorphism algorithm. Let’s take

our 2 ·n! incidence matrixes and check, if they are all distinct, but with the condition,
that we search for matches of matrixes of different graphs. If we find any, then
graphs are isomorphic. Note, that if graphs are isomorphic, then we have at least n!
of matching matrix pairs. And it is enough to find only one pair to prove that graphs
are isomorphic. This fact gives an opportunity to solve isomorphism problem faster
than Grover algorithm do.

2. Ambainis algorithm overview

As we want to change agorithm for element distinctness we need to provide its short
discription and main ideas.

2.1. Main idea

Suppose we have an element distinctness problem (see above). Let r ∈ N , r >= 2
be a parameter. Consider a graph with Cr

N + Cr+1
N vertices. Each of Cr

N vertices
contains set of r indexes from {1, ..., N} and each of other Cr+1

N contains set of r+ 1
indexes from {1, ..., N}. Different vertices contain different sets of indexes.

Two vertexes are connected with an edge only if one of them contain r indexes-
Iv1 = {i1, i2.., ir} and the other contain r + 1 indexes- Iv2 = {j1, j2.., jr+1}, and
|Iv2\Iv1| = 1.

Let’s start in any edge of the graph. Our task is to find one of the vertices that
contain indexes of equal munbers (xi, xj : xi = xj , i 6= j). We will search graph
moving only between vertexes that are connected with an edge. At first we check r
(or r + 1) numbers those indexes are in the starting point. When we move, we need
to check no more then one new number becase incidence vertex sets differs in one
index. So if you can find target vertex by S steps then you can solve an element dis
tinctness by r + S steps.

2.2. Algorithm

Oracle for element distinctness:

f : |i, a〉 → |i, (a+ xi) mod M〉

where register i contains ⌈logN⌉ qubits and register a contains ⌈logM⌉ qubits.
This oracle is used in two situations in the algorithm:

1. |i, 0〉 f→ |i, xi〉 — writing information

2. |i, xi〉 unitary→ |i, (−xi) mod M〉 f→ |i, 0〉 — errasing information

In his article Ambainis solves wider problem–element k-distinctness (searching
for a cortage of indexes i1, i2, ...ik such that xi1 = xi2 = ... = xik

). But we will
consider k = 2 and solving element distinctness only.
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Let x1, x2, ..., xN ∈ {1, 2, ...,M}. Consider we have a Hilbert space H , |H | =
= Cr

NM
r(N − r)(in fact Ambainis algorithm uses two Hilbert spaces but in our

overview we will need only one of them, the other is used to run quantum walks,
and we don’t need to look through them to adapt an algorithm for our purposes).
Basis states are |S, l, x̄〉 where S ⊆ {1, 2, ..., N} , |S| = r-set of indices register, l ∈
{1, 2, ..., N} , l /∈ S — ”edge” register (contain an index you have to query to move
to other state — ”vetrtex”), x̄ ∈ {1, 2, ...,M}r

— contain querried information.

1. Generate the uniform superposition:

1√
Cr

N (N − r)

∑

|S|=r,y/∈S

|S, y〉 ⊗ |0〉

2. Query all xi for i ∈ S. This gives us:

1√
Cr

N (N − r)

∑

|S|=r,y/∈S

|S, y〉 ⊗ |xi〉

3. t1(the exact number of seps needed we will evaluate below) times repeat:

(a) Apply the conditional phase flip (|S, y, x〉 → − |S, y, x〉) for S such that
xi1 = xi2 for distinct i1, i2 ∈ S.

(b) t2 times perform quantium walk1.

4. Measure the final state. If S contains needed indexes then answer ”‘yes”’
otherwise answer ”‘no”’.

2.3. t1 evaluation

We can evaluate t1 as O( 1
α ) where α =

√
α′, α′-fraction of S such that there are

i1, i2 : {i1, i2} ⊆ S and xi1 = xi2 (Note that it is a fraction of S we are searching
for e.g. the fraction of basis states affected by conditional fase flip step of

algorithm).

α′ =
Cr−2

N−2

Cr
N

=

(N − 2)!

(r − 2)!(N − r)!

N !
r!(N − r)!

=
r(r − 1)

N(N − 1)
= O( r

2

N2
)

α = O( r
N

); t1 = O(Nr )

1We won’t look through quantium walks in this paper. The only thing we need to know about
this step is that each step querries oracle twice and t2 in our case depends only on parameter r(it
is a Hilbert space H parameter) and is equal to O(

√
r)
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2.4. Overal result

Overal number of oracle querries is

O( max
2≤r≤N

(r, t1 · t2)) = O( max
2≤r≤N

(r, N√
r
)) = O(N2/3)

where r is set N2/3 to archieve the minimum possible number of querries.
For implementation of this algorithm we require O(r(logN + logM)) qubits.

3. Algorithm for graph isomorphism

In this section we will describe changes we need to apply to algorithm for element
distinctness to solve graph isomorphism problem.

3.1. Main ideas

Suppose we have two graphs G1, G2. Check if they are isomorphic.
In Introduction we have described two oracles for graph isomorphism problem.

One of them — base oracle — recieves an ordered pair of indexes and if this pair
is in edge set of the graph outputs 1 otherwise output is 0. Base oracle is used to
compare this algorithm with others. With this oracle we have built exact oracle we
need in the algorithm. It recieves index of the graph and code of renumeration of
graph and outputs an incidence matrix.

We can look at our problem this way:

1. We have set of numbers(incidence matrixes writen string by string) x1, x2, ..., xN ,

where N = 2 ·n!, x1, x2, ..., xN ∈
{
1, ..., 2n2

}
(each of incidence matrixes require

n2 bits).

2. Check if there are i, j : xi = xj , i ∈ {1, 2, ..., N/2} , j ∈ {N/2 + 1, ..., N}

Problem is similar to element distinctness problem with 2n! elements except we
need to bother that equal elements have different first indexes(first indexes represent
indexes of a graph and they need to be distinct to prove isomorphism).

The only step in graph isomorphism algorithm that is responsible for ”marking”
base states, as base states on witch we want to increase amplitude, is conditional fase
flip step (3a).

If we change condition in conditional fase flip step we also need to reevaluate
t1 becase its evaluation depends on fraction of base states that satisfy fase flip step
condition among all base states.

3.2. Algorithm

Oracle for the algorith we have described in introduction it had two input registers
- one is graph index, the other is renumeration code, but we can treat both of input
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registers as one input register. In case of two graphs this cumulative input register
can receive 2 · n! different values. For simplicity let’s say that it can be 1, 2, ..., 2 · n!

Algorithm is same as in section 2.2(except (3a) step is converted to (3a′) step)

where M = 2n2

, N = 2 · n!, exept (3a) step. t2 remains the same becase Hilbert
space H have the same structure (so t2 = O(

√
r)), t1 changes, its reevaluation we

will provide below.

3a′. Apply the conditional phase flip (|S, y, x〉 → − |S, y, x〉) for S such that xi1 =
= xi2 for distinct i1, i2 ∈ S and one of indexes is in {1, ..., N/2} and the other
in {N/2 + 1, ..., N}.

As the first qubit of oracle input register is the graph index qubit (0 for one
graph and 1 for another),if input is in {1, ..., N/2} then oracle will return incidence
matrix of the first graph otherwise it will return an incidence matrix of the second
graph.

3.3. t1 reevaluation

t1 = O( 1
√

α′

), where α′ is a fraction of basis states with S register such that xi1 =

= xi2 for distinct i1, i2 ∈ S and one of indexes is in {1, ..., N/2} and the other in
{N/2 + 1, ..., N}.

In our algorithm xi, i ∈ {1, 2, ..., N} - incidence matrixes of some renumeration
of the graphs. Consider the right answer of the problem is ”‘yes”’ and our graphs
are isomorphic. This means that there are a pair of renumerations of theese graphs
with same incidence matrixes. If we apply to both theese renumerations any non-
trivial renumeration(we call renumeration trivial if we don’t actualy change index
of any vertex), we recieve another pair of renumerations of initial graphs with same
incidence matrixes. So if the answer is ”‘yes”’ then we have one pair of equal incidence
matrixes of different graphs, and there are at least another n! − 1 distinct pairs of
equal incidence matrixes of different graphs.

Overal number of basis states is Cr
N . If answer of the problem is ”‘no”’, then

we will recieve it anyway and t1 doesn’t play any role. If answer is ”‘yes”’, then
fraction of basis states that contain equal incidence matrixes of different graphs can
be evaluated this way:

1. Let r = (n!)q,where 0 < q < 1/2, q ∈ Re

2. Fix and numerate r2 pairs from n! pairs of equal matrixes of different graphs.

3. Count fraction of basis states that contain first pair.

N1 =
Cr−2

N−2

Cr
N

=

(N − 2)!

(r − 2)!(N − r)!

N !
r!(N − r)!

=
r(r − 1)

N(N − 1)
= O( r

2

N2
) = O((n!)2q−2)
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4. Count fraction of basis states that contain second pair and don’t contain any
member of the first pair(this prevents us from counting some states twice). So
two indexes are fixed in S register and two are denied to be in S.

N2 =
Cr−2

N−4

Cr
N

=

(N − 4)!

(r − 2)!(N − r − 2)!

N !
r!(N − r)!

=
r(r − 1)(N − r)(N − r − 1)

N(N − 1)(N − 2)(N − 3)
= (3.1)

=
(n!)q((n!)q

− 1)(2 · n! − (n!)q)(2 · n! − (n!)q
− 1)

2 · n!(2 · n! − 1)(2 · n! − 2)(2 · n! − 3)
= (3.2)

=
O((n!)2q+2)

O((n!)4)
= O((n!)2q−2) (3.3)

5. ...........................................................................

r2+2. Count fraction of states that contain r2-th pair and don’t contain members of
any previous pair. So two indexes are fixed in S register and 2 · (r2 − 1) are
denied to be in S.

Nr2 =
Cr−2

N−2(r2
−1)

Cr
N

=

(N − 2(r2
− 1))!

(r − 2)!(N − 2(r2
− 1) − r + 2)!

N !
r!(N − r)!

(3.4)

=
r(r − 1)

r−2z }| {
(N − 2(r2

− 1))(N − 2(r2
− 1) − 1)...(N − 2(r2

− 1) − r + 3)

N(N − 1)...(N − r + 1)| {z }
r

=(3.5)

=
O((n!)2q+r−2)

O((n!)r)
= O((n!)2q−2) (3.6)

r2+3. α′ > N1 +N2 + ...+Nr2 = r2O((n!)2q−2) = O((n!)4q−2)

So t1 = O( 1
√

α′

) < O((n!)1−2q). If we set t1 = O((n!)1−2q) we will archive the

result with constant probability.

3.4. Complicity and memory

Overal complicity is O(max ((n!)q , (n!)1−2q · (n!)q/2)). If we set q = 2/5 then we
archive the minimum of complicity.

Complicity in terms of base oracle is O(n2 · (n!)2/5).

Memory required: O((n!)2/5(log(n!) + log(2n2

))) = O(n2 · (n!)2/5) of qubits.
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4. Conclusion

Our algorithm solves graph isomorphism problem faster then Grover algorithm do.
At the same time it requires a lot of memory — exponential memory. It is a variant
of quantium walk algorith and it is based on Ambainis’s algorithm for element dis-
tinctness. At the end I would like to notice that this algorithm can work faster as
we can count fraction of basis states more precisely. It is an open problem.
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