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Continuous-time quantum walk of two interacting fermions
on a cycle graph
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cMoscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny,
Moscow Region, Russia

ABSTRACT

We study a continuous-time quantum walk of interacting fermions on a cycle graph. By finding analytical
solutions and simulating the dynamics of two fermions we observe a diverse structure of entangled states of
indistinguishable fermions. The relation between entanglement of distinguishable qutrits and indistinguishable
electrons is observed. Restrictions imposed by the symmetry of a cycle graph are derived. Possible realization
of a quantum walk in an array of semiconductor quantum dots is discussed.
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1. INTRODUCTION

A quantum walk1,2 of two interacting identical particles is studied in this paper. This walk, which determinis-
tically generates entanglement between initially spatially separated separable particles, is performed on a cycle
graph with N vertices. As a realistic physical implementation of a quantum walk3 on a cycle we consider dy-
namics of electrons in an array of semiconductor quantum dots.4–7 In Ref. 8 it was shown that one can use
electrons, which are placed in semiconductor quantum dots, for encoding quantum information. Errors in such
an encoding are mostly caused by an interaction of electrons with acoustic phonons,9 but they can be corrected
by means of quantum error correction algorithms.10,11

A continuous-time quantum walk on a cycle graph that we consider is based on the model studied in Ref. 12.
Here, however, we consider two electrons that due to their identity introduce additional features in the quantum
state dynamics. A general state of two electrons will be described as a superposition of its basis states |ψ(i,j) 〉:

|ψ(t) 〉 =

N−2∑
i=0

N−1∑
j=i+1

αij(t) |ψ(i,j) 〉 , (1)

where the basis state

|ψ(i,j) 〉 =
1√
2

(| i 〉 |j 〉 − |j 〉 | i 〉) (2)

is an antisymmetric wave function that describes two fermions in positions i and j. Here for the sake of simplicity
we assume that spin part of two fermion wave function is symmetric under permutation. In particular, this is the
case when high constant magnetic field is applied. Then all spins are aligned and spin flips are suppressed. The
coefficients αij are the amplitudes of a fermionic quantum state with

∑N−2
i=0

∑N−1
j=i+1 |αij |2 = 1 normalization

condition. By using notations in Eq. 1 we assume that only amplitudes αij(t) with j > i contribute to the
superposition, which is justified because the considered wave function is antisymmetric under permutation of
positions of fermions.
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A probability to find an electron in a particular place k can be written as a function of amplitudes of a
fermionic wave function

λk(t) =

N−1∑
j=k+1

|αkj(t)|2 +

k−1∑
i=0

|αik(t)|2 . (3)

Due to the indistinguishability of two fermions, both fermions have the same probability to be detected in a
particular place k. Note that the probability λk(t) can also be treated as a population of particles in a place k,
because λk(t) quantifies a number of electrons that can be found on average in a place k by doing measurements
at time t. For that reason λk(t) is also a charge distribution in the case of electrons in semiconductor quantum
dots.

The Hamiltonian that governs the evolution of |ψ(t) 〉 is the following

H = ~Ω

N−1∑
i=0

N+i−3∑
j=i+2

| (i+ 1) mod N 〉 〈 i mod N | ⊗ |j 〉 〈j |+ | i 〉 〈 i | ⊗ | (j + 1) mod N 〉 〈j mod N |+ H.c., (4)

where Ω is a tunneling frequency. This Hamiltonian is time-independent and approximates propagation of two
electrons affected by a Coulomb repulsion between them.13 As it was shown in Ref. 13, entangled states of
electrons can be created by free evolution under the Hamiltonian in Eq. 4. These entangled states can be
used for quantum information purposes and represent two-qudit (two quantum d-level systems) states. Here we
continue our investigation by studying a variety of entangled states, which are possible to create via a quantum
walk preparation procedure.

2. RESULTS

A continuous-time quantum walk under consideration is performed by electrons that are initially prepared in the

|ψ(0) 〉 =
1√
2

(|0 〉 |K 〉 − |K 〉 |0 〉) (5)

state with K = N/2 for a circle with an even number of nodes N . The specific choice of the initial state is based
on the ability to experimentally prepare the state by separately placing two electrons in most distinct from each
other quantum dots. This initialization procedure assures that initially electrons do not influence each others
state. And although we describe the initial state with a fermionic wave function from Eq. 5, the state itself
represents a classical separable state of two particles. However, starting from |ψ(0) 〉 and evolving under the
Hamiltonian H, electrons immediately become entangled.13

In this paper we consider a special state of electrons during their quantum walk, in which electrons are
uniformly distributed over the circle. That means that at a certain time τ each electron can be found anywhere
on the cycle graph with an equal probability, i.e.

λj(τ) =
1

N
. (6)

As it will be shown below, the state of two uniformly distributed fermions has a number of interesting properties.
In general, however, it is not guarantied that time τ that satisfies Eq. 6 exists for any size of a circle and for a
specified initial condition. Nonetheless, as it is shown below, for several small sizes of the graph we were able to
find time τ approximately by numerically simulating the dynamics of interacting electrons. Furthermore, for the
case of N = 6 by using an analytical solution13 we explicitly demonstrate the existence of the uniform charge
distribution. For time

τ =
1√
6Ω

(
arccos

(√
3− 2

)
+ 2πn

)
, n ∈ Z (7)

we obtain

|ψ 〉6 =

(
2√
3
− 1

)
|ψ(0,3) 〉+

(
1√
3
− 1

)(
|ψ(1,4) 〉 − |ψ(2,5) 〉

)
−

− i

√
2√
3
− 1

(
|ψ(0,2) 〉+ |ψ(0,4) 〉+ |ψ(1,3) 〉 − |ψ(3,5) 〉

)
. (8)



This state of two fermions at this time is depicted in Fig 1, obtained by numerically solving the Schrödinger
equation. Fig. 1(a) shows a probability distribution λj(τ) for all 0 ≤ j ≤ 5 at time τ specified by Eq. 7. One
can see that all λj are approximately equal, that is particles are distributed uniformly over the cycle graph with
6 vertices. This uniform distribution is, however, does not represent a state with fully random and independent
positions of electrons. On the contrary, the state with uniformly distributed electrons is highly entangled, which
can be seen by computing a fermionic entanglement measure for the state in Eq. 8. Here for entanglement
quantification we use the fermionic concurrence:14

CF =

√
2N

N − 2

(
1

2
− Trρ21

)
, (9)

where ρ1 is the reduced one-particle density matrix. For the state in Eq. 8 we obtain CF ≈ 0.79. Other
entanglement measures for the case of two fermions, which are suitable for our problem, are discussed in Ref. 15.
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Figure 1. A quantum state of two electrons at time tΩ = 3.317, which approximately corresponds to the case of
tΩ = 1√

6
arccos

(√
3− 2

)
+ 2π√

6
. (a) Charge population λk in each vertex 0 ≤ k ≤ 5. Electrons are uniformly distributed

over the circle. (b) Correlation matrix, which corresponds to probability of finding a pair of electrons in positions x and y.
(c) Types of entanglement. Each line connects two possible positions of electrons. Color coding corresponds to different
terms in Eq. 8.

Fig. 1(b), where probabilities p(x, y) to find electrons in positions x and y are plotted, depicts all possible
combinations of positions in which electrons can reside. Because electrons are indistinguishable, the coincidence
matrix is symmetric, i.e. p(y, x) = p(x, y). In Fig. 1(c) we schematically summarize all the possibilities to see two
electrons: there are 7 different combinations of positions, each shown with a line that connects these positions.
Some combinations, due to the symmetry, must have the same probability to be observed, and are shown with
the same color.

As it was shown in Ref. 13, one can define two qudits, i.e. two d-level of quantum information, in the described
system. In the case shown in Fig. 1, one can define two qutrits (3-level systems) by assigning positions 5, 0 and 1
to the first fermion, and positions 2, 3 and 4 to the second fermion. In other words, if one observer has an access
to the upper part of the circle, and the second observer has an access to the lower part of the circle, then they
share an entangled pair of fermions. The high degree of entanglement, which we quantify by CF , can be verified
by local measurements implemented by individual observers and the subsequent communication between them.
Without communication the observers will not be able to distinguish an entangled state from a mixed state of a
uniformly distributed charge.

Note that after defining two qutrits, particles become distinguishable (upper and lower electrons), and a mea-
sure of entanglement for two 3-level systems should be used. By analogy with CF , one can consider concurrence

C =

√
3

2

(
1− Tr

(
ρ̃1

2
))
, (10)



where

ρ̃1 =

∑
i,j=5,0,1 | i 〉 〈 i | ρ1 |j 〉 〈j |

Tr
(∑

i,j=5,0,1 | i 〉 〈 i | ρ1 |j 〉 〈j |
) (11)

is a reduced density matrix of the upper qutrit. It is important that for the case of two qutrits we obtain C = CF .
Hence we conclude that entanglement of indistinguishable electrons is fully transferred to entanglement of two
qudits.

The state with equally distributed electrons for circle with N = 8 nodes is obtained numerically for time
τ ≈ 8.1/Ω and is shown in Fig. 2. Similar to Fig. 1(a), in Fig. 2(a) one can see the charge population, which
is approximately equal in all vertices. Fig. 2(b) depicts the probabilities to detect electrons in positions x and
y at time τ ≈ 8.1/Ω. Fig. 2(c) schematically demonstrates all non-zero terms in the superposition of Eq. 1
by connecting positions of two electrons with a line. Lines of the same color correspond to equal amplitudes
in the superposition and represent one class of entangled states. One can see that there more different classes
of entanglement (two additional colors: red and green) in comparison to the case of N = 6. This is due to
additional possibilities enabled by dots 2 and 6 in Fig. 2(c). The value of entanglement of the state in Fig. 2
is estimated by using the fermionic concurrence in Eq. 9, which gives a value of CF ≈ 0.88. Note that one can
reduce the case of N = 8 to the smaller size N = 6 by doing a postselection: the final state will be conditioned
on zero electrons being detected in dots 2 and 6.
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Figure 2. A quantum state of two electrons at time tΩ = 8.1. (a) Charge population λk in each vertex 0 ≤ k ≤ 7.
Electrons are uniformly distributed over the circle. (b) Correlation matrix, which corresponds to probability of finding a
pair of electrons in positions x and y. (c) Types of entanglement. Each line connects two possible positions of electrons.
Different colors correspond to unequal amplitudes of fermionic wave function.

Next we show that it is impossible to detect electrons arranged in a horizontal line, i.e. nodes i and (N − i)
for 0 < i < N cannot be occupied at the same time. Due to the symmetry of the initial state, for each non-zero
αi,j amplitude, there exists a non-zero αN−j,N−i = −αi,j . For j = N − i we get αi,N−i = −αi,N−i, hence

αi,N−i = 0 (12)

and |αi,N−i|2 = 0. Apart from this restriction and Coulomb repulsion restriction, there are no other rules that
prohibit two fermions to be detected in arbitrary positions on a graph.

One can see that obviously these restrictions apply to the specific sizes of a cycle graph with N = 6, N = 8
and N = 10 vertices, shown in Fig. 1, Fig. 2, and Fig. 3. Moreover, the state with equally distributed electrons
has all possible combinations of electron positions, which one can see from Fig. 1(c) and Fig. 2(c). Fig. 3(c)
depicts in dotted gray all the restrictions imposed by Coulomb repulsion and Eq. 12. The value of entanglement
of the state in Fig. 3 is estimated by using the fermionic concurrence, which gives a value of CF ≈ 0.88. The
value is similar to the one from the case of N = 8.
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Figure 3. A quantum state of two electrons at time tΩ = 6.9. (a) Charge population λk in each vertex 0 ≤ k ≤ 9.
Electrons are uniformly distributed over the circle. (b) Correlation matrix, which corresponds to probability of finding a
pair of electrons in positions x and y. (c) Dashed gray lines connect pairs of dots, which are impossible to occupy at the
same time.

As we discussed before, an entangled state of two fermions can be shared between two observers. In realistic
scenario, the shared state will be subjected to decoherence, which can be modelled by a depolarizing noise. This
noise, nevertheless, will not change the charge distribution over the circle, it will stay uniform. However the
noise will create a mixture of positions instead of a coherent superposition, which will be noticeable to individual
observers. The observers can detect errors if they detect two electrons in a horizontal line, i.e. nodes i and
(N − i) for 0 < i < N .

3. CONCLUSION

Two fermion quantum walks were investigated. Dynamics of fermionic entanglement arising due to interaction
was obtained. By considering the case of uniformly distributed electrons, we identified classes of entangled
states, which depend on the size of the cycle graph. Additional restrictions on possible classes of entangled
states imposed by the symmetry of the graph and the initial conditions were derived. For a specific size of the
cycle graph, we showed that fermionic entanglement can be transferred to entanglement of two distinguishable
qutrits without any loss of quantum correlations. The results presented open new perspectives for multi-fermion
quantum walks experiments and creation of truly entangled multi-fermion states.
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