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Abstract The decoherence and dephasing rate of charge qubits in systems based on
double and triple SiGe quantum dots are studied. At the short time limit, electron–
phonon interaction causes an incomplete decay of the off-diagonal density matrix
elements. Long-time relaxation decay dominates over dephasing at large times. The
triple quantum dot system with the same interdot distance demonstrates lower relax-
ation rate in the wide range of parameters.

Keywords Quantum computation · Nanotechnology · Quantum dots · Phonons ·
Charge qubit · Decoherence

1 Introduction

For the last years, semiconductor quantum dots are considered to be one of the most
realistic nanodevices for the quantum information processing. Recent experiments [1]
have shown that coherent quantum oscillations of singlet-triplet spin qubits in Si/SiGe
have longer intrinsic spin coherent times than singlet-triplet qubits in GaAs. The con-
trol over spin states has made remarkable progress; however, spin qubits demonstrate
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Fig. 1 The sketch of the triple quantum dot system and its control electrodes

substantial decoherence still. Due to mixing of electron spin degrees of freedom with
spatial (charge) degrees, one have to look for the methods to extend spatial coher-
ence. This work investigates the above-mentioned experimental results and related
alternative scheme.

It is important to examine how electron–phonon interaction can affect the coher-
ent oscillations, because it is inherent to semiconductor nanostructures. In this work,
we analyze decoherence of single electron in a double and triple dot potentials due
electron interaction with acoustic phonons. These structures can be fabricated as gate-
engineered quantum dots, whose potential distribution is determined by the external
metallic top-gates. Firstly, we consider a single electron in the double well poten-
tial with anisotropic electron–phonon coupling, examining the relaxation and phase
damping rate. Furthermore, we consider triple quantum dot confining one electron
and find the parameter’s spacing where this system would have advantages over con-
ventional double dot. The schematic representation of triple quantum dot is shown in
Fig. 1. This system as a basis for quantum bit implementation has attracted attention
recently [2,3].

2 The properties of structure

For definiteness, we will focus our consideration on properties of experimental Si/SiGe
quantum dot structure recently studied in [1]. The electron–phonon interaction in
thin Si layer differs from electron–phonon interaction in bulk Si because of strain
effect. In our case, the layer containing two-dimensional electron gas is a strained
silicon quantum well, lying on buffer of Si0.71Ge0.29 [4]. Lattice deformation leads to
band structure change. Since lattice constants of heterolayers are mismatched l1/ l0 =
1,0094, Si layer is squeezed along [001] direction perpendicular to heterointerface.
Poisson constant of Si μ = 0.266; therefore, silicon is squeezed in accordance with
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Estimations of phonon-induced decoherence 1895

εz = μ(l1 − l0)/ l0 = −0.0025. This deformation decreases in effect the gap for [100]
and [010] by 0.0375 eV and increases gap for [001] by 0.0125 eV [5]. Therefore, at
temperatures below 1 K, the influence of upper valley is neglected.

The electron–phonon interaction can be expressed as

Hep = ΞdΣ

(
h̄

2ρsqV

)1/2

|q|P(q̄)
(

bq̄ + b+
q̄

)

+Ξu

∑
α

(
k̄αq̄

)2
(

h̄

2ρsqV

)1/2

|q|−1 P(q̄)
(

bq̄ + b+
q̄

)
(1)

Here, bq̄, b+
q̄ — phonon annihilation/creation operators, P(q)—the formfactor of

triple quantum dot, q̄— phonon wave vector, P(q̄)—formfactor. k̄α are directed toward
[010] and [100] valleys, respectively. Following Ref. [5], we use the following values
for material constants Ξu = 10.5 eV, Ξd = 3.34 eV.

Quantum dots are shaped by the repulsive potential of top metal gates. Following [6],
we take an appropriate wave-function for quantum well. The electron wavefunction
at the heterointerface is relatively thin in perpendicular direction with characteristic
size of about 3 nm. The size of quantum dot in lateral directions can be few tens of nm
depending on structure geometry and potential at the gates. For large quantum dots with
diameter more than 50 nm, the distance between energy levels goes below temperature
range of 100 mK that prevents experimental observation of quantum coherent effects.
The electron wavefunction for triple quantum dot system is taken in the form

Ψi (q̄) = 1

a1/2
2 a1π3/4

e− 1
2 a2

1(q2
y+q2

x)− 1
2 a2

2q2
z e−iq̄R̄i . (2)

Here, a1 = 47 nm, a2 = 3 nm, R̄i is the vector corresponding to the centers of
i = (1, 2, 3) quantum dots

Hence, the formfactor is

P(q̄) = 1

a2a2
1π

3/2
e−a2

1(q2
y+q2

x)−a2
2q2

z e−iq̄R̄∑
i

e−iqR̄i c+
i ci (3)

3 Decoherence in triple quantum dot system

3.1 Phase damping

To investigate decoherence dynamic at small times, we have to consider evolution
of entanglement between quantum system of interest and environment. In our case,
single electron in triple quantum dot interacts with phonon reservoir. The temporal
behavior is governed by the Hamiltonian

H = H0 + Hep +
∑

b+
q̄ bq̄ωq (4)
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Here:

H0 =
⎛
⎝ ε1 0 0

0 ε2 0
0 0 ε3

⎞
⎠ (5)

The electron–phonon hamiltonian can be represented in this way:

Hep =
∑

i
QiFi (6)

Qi = c+
i ci (7)

Here, the operators Fi are referred to the reservoir and operators Qi act on system’s
variables.

To study phase decoherence effects, we chose intentionally the realistic situation
of qubit operation as memory cell when interdot barriers are high so that electron
tunneling is suppressed. Then, electron–phonon interaction term in our Hamiltonian
commutes with electron term; therefore, there is no energy exchange between electron
and phonon reservoir. To calculate the rate of phase damping, we should split the
formfactor in electron–phonon hamiltonian on nontrivial and identity terms

P(q̄) = 1

a2a2
1π
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e−a2

1(q2
y+q2

x)−a2
2q2

z e−iq̄R̄∑
i

e−iqR̄i c+
i ci

= 1

a2a2
1π

3/2
e−a2

1 (q
2
y+q2

x )−a2
2q2

z e−i q̄ R̄
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A

(
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1 c1 + c+
2 c2 + c+

3 c3
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(
c+

1 c1 − c+
2 c2

) + C
(
c+

2 c2 − c+
3 c3

))
(8)

The two latter terms give rise to electron dephasing.
The evolution operator [7] is as follows:

U(t) = exp

⎧⎪⎨
⎪⎩−i

t∫
0

∑
q

(
Bσ12

z + Cσ23
z

) (
gqb+

q eiωqt′ + g∗
qbqe−iωqt′

)
dt′

⎫⎪⎬
⎪⎭

= exp

⎧⎪⎪⎨
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(
Bσ12

z + Cσ23
z

) 1

2

∑
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(
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qξq(t) − bqξ
∗
q (t)

)
⎫⎪⎪⎬
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(9)

Here,

ξq(t) = 2gq
1 − eiωqt

ωq
(10)
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gq =
(

h̄

2ρsqV

)1/2
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(
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The states are transformed by evolution operator into the following:

(c1 |1〉 + c2 |2〉 + c3 |3〉)⊗ ∣∣0q
〉 U(t)−→

→ c1 |1〉
∣∣∣∣1

2
ξq(t)B

〉
+ c2 |2〉

∣∣∣∣1

2
ξq(t)(C − B)

〉
+ c3 |3〉

∣∣∣∣−1

2
ξq(t)C

〉
(12)

Reduced density matrix elements are as follows:

ρij(t) = 〈i| TrRU(t)ς(0)U−1(t) |j〉 (13)

The diagonal elements of density matrix remain constant [7]. For example, element
ρ11:

U−1(t) |1〉 ⊗ ψ = |1〉 ⊗
∏

q

D

(
1

2
ξq(t)B

) ∣∣ψq
〉

(14)
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While off-diagonal terms:
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Following [1]:

B2
12(t) ∝

∫
dq|gqC|2coth

(ωq

2T

) 1 − cosωqt

ωq
(17)
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Fig. 2 The time dependence of spectral function for B12 and B13 nondiagonal elements

Compare the values of spectral function for different off-diagonal elements

B2
12 = V

h̄2π3

∫
d3q

|gqC|2
q2s2 coth

(
h̄qs

2kBT

)
sin2

(
qst

2

)
(18)

B2
13 = V

h̄2π3

∫
d3q

|gq(B-C)|2
q2s2 coth

(
h̄qs

2kBT

)
sin2

(
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2
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B2
23 = V

h̄2π3

∫
d3q

|gqB|2
q2s2 coth

(
h̄qs

2kBT

)
sin2

(
qst

2

)
(20)

The expression for spectral function B2
12 is similar to expression for the case of

double dot system:
The maximum value of B2

12 reaches 7.810−3 at 8 ps. Asymptotic value of B2
12 at

large times is 6.210−3 (Fig. 2).
Values of spectral function B2

23 are lower than values of B2
12; therefore, the deco-

herence at small times will be dominated by spectral function B2
12.

3.2 Relaxation

Consider the case of asymmetrical potential distribution in triple quantum dot system.
The corresponding Hamiltonian

H0 =
⎛
⎝ εP εA 0
εA 0 εA

0 εA −εP

⎞
⎠ (21)

One must take into account the relaxation decoherence effect in the three-level sys-
tem, because electron–phonon interaction term does not commute with initial hamil-
tonian. In the condition of low temperatures, we are interested in low energy oscilla-
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Fig. 3 The absorption probabilities for double and triple quantum dot systems

tion between states with eigenvalues equal −
√
ε2

P + 2ε2
A and 0. The probability for

the absorption of the phonon due to excitation from the ground state to the upper level
is [8]

Wi→f = V

(2π)2h̄

∫
d3q

∣∣〈f| Hep |i〉∣∣2
δ
(	εij − h̄sq

)
(22)

where |i〉 is the initial state with extra phonon with energy h̄sq and | f 〉 is the final
state, and q is the wave vector. The transitions to the lower energy state correspond to
emission processes; in the other case, we have absorption processes. The parameter

a = εP/εA (23)

accounts for localization of eigenstates in the centers of quantum dots. The dependence
of absorption probabilities for transitions between states |1〉 − |2〉 and |1〉 − |3〉 from
a is shown on Fig. 3 for comparison with double dot system. The time dependence
for diagonal elements of density matrix is described with Liouville equation

dρ11

dt
= (−Wa

21 − Wa
13

)
ρ11 + We

12ρ22 + We
31ρ33 (24)

dρ22

dt
= Wa

12ρ11 + (−We
12 − Wa

12

)
ρ22 + We

12ρ33 (25)

dρ33

dt
= Wa

13ρ11 + Wa
12ρ22 + (−We

31 − We
12

)
ρ33 (26)

which is simplified due to

We
32 = We

12, (27)

Wa
32 = Wa

12. (28)
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The values of absorption probability for different cases versus a= εP/εA:

3.3 Calculation of nondiagonal elements

Consider nondiagonal elements for Liouville equation. Following Ref. [9], we can
split each coefficient onto independent parts

〈
m′∣∣ ˙ρ(t) |m〉 = −γm′m

〈
m′∣∣ ρ(t) |m〉 (29)

γm′m =
∑
k

(
�+

m′kkm′ + �−
mkkm

) − �+
mmm′m′ − �−

mmm′m′ (30)

Where:

�+
mkln = (1/h̄)2

∑
ij

〈m| Qi |k〉 〈l| Qj |n〉
∫

dt′ exp
(−iωlnt′

) 〈
F(t′)iFj

〉
(31)

�−
mkln = (1/h̄)2

∑
ij

〈m| Qj |k〉 〈l| Qi |n〉
∫

dt′ exp
(−iωmkt′

) 〈
F(t′)jFi

〉
(32)

ωmn = (Em − En) /h̄ (33)

In the case of one-phonon approximation, we have sums of Γ − and Γ + terms
with ωln = 0 and same indexes equal zero. Consider the integrals in the right side of
summands

∞∫
0

dt′exp(−iωmkt′)
〈
FjF(t

′)i
〉 =

∞∫
0

dt′exp
(−iωmkt′

)
trR[F(t ′)iFjρ(0)R]

=
∑
N′N

〈
N′ ∣∣Fj

∣∣ N
〉 〈

N |Fi| N′〉 〈N′ |ρ(0)R| N′〉

×
∞∫
0

dt′exp[i (EN′ − EN − h̄ωmk) t′/h̄]

(34)

The indexes N and N′ correspond to initial and final states of reservoir. Further

�+
mkln + �−

mkln

= (1/h̄)2
∑
ijNN′

〈m |Qi| k〉 〈l| Qj |n〉 〈
N′∣∣ Fi |N〉 〈N| Fj

∣∣N′〉 〈N′∣∣ ρ(0)R ∣∣N′〉

×
∞∫
0

dt ′exp[i (EN ′ − EN − h̄ωln) t ′/h̄]
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+ (1/h̄)2
∑
ijNN′

〈
m

∣∣Qj

∣∣ k
〉 〈l| Qi |n〉 〈

N′∣∣ Fj |N〉 〈N| Fi
∣∣N′〉 〈N′∣∣ ρ(0)R ∣∣N′〉

×
∞∫
0

dt ′exp[i (EN ′ − EN − h̄ωnl) t ′/h̄]

= (1/h̄)2
∑
ijNN′

∣∣〈mN| V
∣∣nN′〉∣∣2 〈

N′∣∣ ρ(0)R ∣∣N′〉 δ (EN′ − EN − h̄ωln) (35)

In the case of

ωln = 0 (36)

we have

EN′ = EN (37)

which means that initial and final states are the same. In the case of one-phonon
approximation, we have zero amplitude of transition between two levels with similar
energy.

And finally, we can define each coefficient shortly

γ12 = Γ +
1221 + Γ +

1331 + Γ −
2112 + Γ −

2332 (38)

γ13 = Γ +
1331 + Γ +

1221 + Γ −
3113 + Γ −

3223 (39)

γ32 = Γ +
3113 + Γ +

3223 + Γ −
2112 + Γ −

2332 (40)

We can express real and imaginary part of each coefficient

�+
mkln = (1/h̄)2

∑
ijNN′

〈m |Qi| k〉 〈l| Qj |n〉 〈
N′∣∣ Fi |N〉 〈N| Fj

∣∣N′〉 〈N′∣∣ ρ(0)R ∣∣N′〉

×
∞∫
0

dt ′exp[i (EN ′ − EN − h̄ωln) t ′/h̄]

= (1/h̄)2
∑
ijNN′

〈m |Qi| k〉 〈l| Qj |n〉 〈
N′∣∣ Fi |N〉 〈N| Fj

∣∣N′〉 〈N′∣∣ ρ(0)R ∣∣N′〉

×
(

1

i
√

2π (EN′′ − EN − h̄ωln)
+ √

π/2δ ((EN′′ − EN − h̄ωln) /h̄)

)
(41)

For the real part of the nondiagonal coefficients, we have the following:

Re[γ12] = W21 + W31 + W12 + W32

2
(42)

Re[γ13] = W31 + W21+W13 + W23

2
(43)
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Re[γ32] = W13 + W23 + W21 + W32

2
(44)

The imaginary part can be divided on two terms:

Im[�+
mkln] = −(1/h̄)2

∑
N′

∣∣〈1; 0 |V| 2; N′〉∣∣2 〈
N′ |ρ(0)R| N′〉 1√

2π (EN′ − h̄ω21) /h̄

−(1/h̄)2
∑
N

|〈1; N |V| 2; 0〉|2 〈0 |ρ(0)R| 0〉 1√
2π (−EN − h̄ω21) /h̄

= −(1/h̄)2
∫

d3q |〈1; 0 |V| 2; N〉|2 exp[−βh̄sq] 1√
2π (sq − ω21)

−(1/h̄)2
∫

d3q |〈1; N |V| 2; 0〉|2 exp[−βE0] 1√
2π (−sq − ω21)

(45)

The first part contains the logarithmic divergence, but it is suppressed due to pres-
ence of term

〈
N′ |ρ(0)R| N′〉 which is exponentially lower than 〈0 |ρ(0)R | 0〉. The

second part was calculated for our systems parameters, and it leads to 1,5 % percent
reduction of frequency. This reduction is consistent with the more accurate calculation
using adiabatic renormalization for superohmic bath [10].

Despite the another choice of approximating function fitting data in experimental
work, we have time T2 = 0.50 ns for double dot system [1] being close to T∗

2 =
0.18 ns. We believe that the reason of this mismatch is Gaussian form of approximating
function, and it underestimates the relaxation rate due to fast decrease.

3.4 Error estimates

In order to analyze the performance of the triple quantum dot system and its quality
with respect to the fault-tolerant quantum computing criteria, one should estimate
the error during one qubit oscillation time �t. Consider the norm of the following
deviation density operator σ

σ (t) = ρ(t) − ρideal(t) (46)

Where an “ideal” evolution is defined only by the Hamiltonian H0:

ρideal(t) = e−iHot/h̄ρ(0)eiHot/h̄ (47)

And the error is defined by the measure of decoherence [11]

D(t) = sup
ρ(0)

(‖ρ(t) − ρid(t)‖) (48)

To perform fault-tolerant quantum information processing, one needs to keep D(� t)
below the fault-tolerant threshold. Following [12], in order to find the error due to the
phase damping, one have to search for the maximum over the parameters in
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ρ(0) = U(K |1〉 〈1| + (1-K-L) |2〉 〈2| + L |3〉 〈3|)U+, (49)

where 0 � K � 1, 0 � L � 1 − K and U is an arbitrary 3 × 3 unitary matrix. This
quantity should be compared with an error of double dot system

Ddb
ph(t) =

(
1 − e−B2

(t)
)
/2 (50)

After the numerical calculation, we found that the error due to phase damping in
the triple quantum dot system can be well approximated with

Dtr
ph(t) =

(
1 − e−B2

12(t)
)

2/3, (51)

due to the relatively small difference between B2
12 and B2

13.
The contribution of relaxation to the error of quantum qubit is calculated similarly.

In the case of the qubit’s subspace|1〉 ⊗ |2〉, one have to search the maximum of error
over the parameter 0 � K � 1 keeping L = 0. The largest deviation for this subspace
can be well approximated with the following:

Dtr
12(t) = 1 − e−�12t

1 + e−E/kT (52)

Here,

�12 = Wa
12 + We

12 + Wa
23 + We

23. (53)

The error of quantum qubit in the subspace |1〉 ⊗ |3〉 is

Dtr
13(t) = 1 − e−�13t

1 + e−E/kT , (54)

with

�13 = Wa
23 + We

23. (55)

Finally, we can represent the error during one qubit oscillation time in the case of
εP = 0 on the Fig. 4, and the error dependence from interdot distance on Fig. 5.
The distance between two nearest extrema equals ΔL = h̄sπ/ε in the case of triple
quantum dot with qubit subspace |1〉 ⊗ |3〉 and double dot system. The choice of
subspace will lead to the different values of error rate.

4 Discussion

We analyzed decoherence rates of electron charge states in SiGe triple quantum dots.
The decoherence was induced by anisotropic deformation interaction of electron with
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Fig. 4 Dependence of the error rate from qubit oscillation time, L = 180 nm

Fig. 5 Dependence of the error rate from interdot distance at �t = 4 ∗ 10−11 s

acoustic phonons. Our results show that in wide range of parameters, triple quantum
dot qubit architecture may have lower decoherence rate compared to double quantum
dot qubits.
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