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Algorithmi approah to quantum physisY.I.Ozhigov∗Mosow State University,Institute of Physis and tehnology RASMarh 25, 2008AbstratAlgorithmi approah is based on the assumption that any quantum evolution of many partilesystem an be simulated on a lassial omputer with the polynomial time and memory ost. Al-gorithms play the entral role here but not the analysis, and the simulation gives the "�lm" whihvisualizes many partile quantum dynamis and is demonstrated to a user of the model. Restritionsfollowing from the algorithm theory are onsidered on a level of fundamental physial laws. Born rulefor the alulation of quantum probability as well as the deoherene is derived from the existene ofa nonzero minimal value of amplitude module - a grain of amplitude. The limitation on the lassialomputational resoures gives the uni�ed desription of quantum dynamis that is not divided to theunitary dynamis and measurements and does not depend on the existene of observer. It is proposedthe desription of states based on the nesting of partiles in eah other that permits to aount thee�ets of all levels in the same model. Algorithmi approah admits the possibility of refutation,beause it forbids the reation of a salable quantum omputer that is allowed in the onventionalquantum formalism.1 IntrodutionThe notion of lassial algorithm and omputational methods headily penetrate to all areas of naturalsienes. This penetration gives the new language for the desription of siene that is based rather onalgorithms than on formulas and priniples as the onventional approahes. This new approah brings theserious hange of the ontents of sienes that is not yet fully realized due to the inredible �exibility anduniversality of the algorithmi desription of Nature. But we already meet with the surprising featuresof this new desription that distinguish it from the onventional language and these features an be inprinipal established in experiments. It is onneted with the most advaned part of the natural siene- physis, or more preisely, quantum physis where this di�erene has been revealed very expliitly; it isjust the subjet of this artile1.The algorithmi approah to physis is based on the simple idea: a omputer must be onsidered asa paramount physial devie whih neessarily attends at any experiments. It was just so even whenthere were no omputers, their role was played by a physiist who ful�lled all the omputations athand. It follows from this assumption that all the limitations that result from algorithm theory must be
∗e-mail: ozhigov�s.msu.su1Several researhers have ome to the idea of this approah independently; here I mention V.Akulin who expressedit in the talk with the author; some suggestions of the limitation on the area of appliability of quantum formalism arepermanently expressed by the other sientists, espeially by those who deal with the di�erent aspets of the deohereneproblem (see, for example, ([Fe℄,[Ak℄). 1
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onsidered equally to the physial laws. We all these limitations omputational. The main assumptionof algorithmi approah was not very pithy when the omputational limitations ould be ignored, e.g.,when the existene of a omputer ould be negleted or it ould be used as a simple alulating mahinefor alulations by �xed formulas2. The situation has been hanged when the traditional analytialformalism of physis ame into on�it with its new problems. It beame evident with the beginningof the elaboration of a hypotheti quantum omputer, whih was appealed to in order to resolve thison�it. The onept of a quantum omputer proeeds from the assumption of the priority of analytialtehnique over algorithms. E.g., here it is impliitly assumed that the onept of a lassial algorithm isnot fundamental and an be easily replaed by the omputational proedure of the other type - quantumomputation. This assumption is the attempt to extrapolate quantum physis to the area where it hasbeen never heked, hene a quantum omputer must be treated as a prinipal hypothesis to whih wewill return later.Now we try to understand what we an obtain with algorithmi approah, when we assume the oneptof algorithm as the most fundamental. The key assumption of this approah is the theoretial possibilityto reate the omplete model of observed events by means of a lassial omputer whih uses e�etivealgorithms and is independent of an experimentalist. An e�etive algorithm is suh a lassial algorithmthat requires the quantity of resoures (time and memory) limited by some polynomial of the memorysize needed for the desription of the simulated system states3. Suh a model must show in eah momentthe distribution of the probability to �nd any subsystem of the simulated system in any possible statefor whih this probability p is su�iently large. For example we an assume that pTtot > 1, where Ttot -is the largest aessible value of the time.The work of suh an algorithm an be represented in the form of a "�lm" whih is demonstrated toa user, who annot interfere to this "�lm"; a user an only order suh a "�lm" beforehand and point,for example, what measurements and when it is planned to do over the simulated system4. In otherwords we onsider the Nature as the "�lm" demonstrated to us through the simulating omputer thatis inluded to the omputational network, and as users we have no rights to aess inside this network.Suh a network an be onsidered as a model of the frame aosiated with the given user. All theinformation this omputer deals with has thus the form of binary strings of the limited length. Thephysial magnitudes needed for the right demonstration of the "�lm" (for example, binding energy in amoleule, the mean distane between atoms et.) are omputed by the simulating omputer in ourse ofthe "�lm" preparation and are used in its demonstration. Suh "�lms" are the most general form of thephysial phenomena desription orresponding to the algorithmi approah. The matter thus onernsthe replaement of the onventional mathematial apparatus of physis (analysis and algebra) to thedi�erent mathematial apparatus (algorithms) that is more general but by virtue of the historial reasonsis less known to physiists. We will not develop this topi here and onentrate on the pratial side2Stritly speaking it is never possible to ignored the omputational limitations. For example, even exat mathematialonsideration of one eletron movement in vauum with the aount of relativisti e�ets (transformations of photons andeletron-positron pairs) leads to the summing of divergent sums and several triks, for whih the mathematial substantia-tion is based on the impliit onfession of the priority of algorithms over the desriptive tehnique like partiles and theirinterations. Just suh a priority is used in the method of renormalization where the lassial viewpoint to the full onsid-eration of spae-time is sari�ed to the preserving of the onveniene of the algorithmi desription of dynamis. Quantummethod won in atomi physis just beause it gave the e�etive algorithms leading to the right preditions as opposed tolassial method. For example, Shroedinger equation gives the hydrogen atom spetrum after easy omputations whereasthe lassial method without negleting eletromagnetism leads to the wrong predition, and the lassial onsideration ofthe eletron movement in eletromagneti �eld based on Maxwell equations and relativisti formula for energy has not yetful�lled beause this problem statement gives no e�etive algorithms.3This lass of algorithms is independent from the formalization of algorithms.4Of ourse, if we allow to a user to interfere in suh a "�lm" the problem would beome insoluble due to the quantumnon-loality. But just our problem statement has the pratial signi�ane beause it an answer to the main question ofan experimentalist: what these or that ations over the given system result in. Here the delay that ompensates the lak ofproessing speed annot in turn exeed the established limits. Pratially, the time of simulation must grow not faster thanlinearly as the size of simulated system grows, beause otherwise we annot hope to reate even the �lm with minimumsubstane. 2



of this approah. We only note that the advantage of this desription is that the speialists in di�erentareas an work with it independently; this possibility itself an be ruial for the future of this approah.The prinipal onsequene of algorithmi approah is the existene of the minimal and nonzero valueof amplitudes molude, the so alled amplitude quantum (or grain). The thesis about amplitude quantumgives suh a lassial urn sheme for quantum probability that implyies Born rule (see below). Moreover,the onept of amplitude quantum makes possible to give a uni�ed desription of quantum dynamiswhih is not divided to the unitary dynamis and measurements and does not depend on the existene ofobserver. It makes the "�lm" representation of dynamis as objetive as the onventional representationby formulas.Algorithmi approah whih we are going to onsider arises from the attempts to reate a omputermodel for the dynamis of many partile systems with quantum behavior, for example, hemial reations.It inludes the dynamis of atoms and moleular strutures onneted with the hange of eletroni statesinduing the reation of hemial bounds between atoms. It is well known that the behavior of an eletronannot be desribed in terms of lassial dynamis, say by the representation of it as a ball moving inthe Coulomb potential of the nuleus. All the more it is impossible for a system of several eletrons.The prinipal di�ulty arises already for the states of many eletrons in atoms and moleules. Thedimensionality of the spae of these states grows exponentially when the number of eletron inreases.The exponential growth takes plae even if we limit the number of exited one eletron levels by a linearfuntion. Suh states are usually represented by Fok-Sleter determinants omposed from one eletronfuntions whih are hosen from the ondition of zero energy variation of many eletron system (see ([Sl℄)).When omputing suh determinants we have to ful�ll exponential work depending on its size and theirtotal number will grow exponentially as well. This is why existing algorithms of moleular simulationaount the number of eletrons limited beforehand (for example, two eletrons for eah valene boundonly, and even for these two eletrons the omputation of state is ful�lled not in the whole spae but in theapproximation of mean �eld or the similar). Quantum states of nulei are not taken into aount at all,the nulei are onsidered as "balls with the springs" where the "springs" are determined by the stationaryeletroni on�gurations and the Coulomb interations between nulei. The orretions onneted withthe quantum harater of the nulei movement an be then introdued to suh a model by hand. Forexample, the well known and very important phenomenon of a proton tunneling requires the quantumdesription in the form of wave funtion, not by the lassial way; the tunneling of a nitrogen atom in amoleule of ammonia that results in the observed spetrum of this moleule, hydrogen bounds et. Thistype of more omplex phenomena annot be desribed in terms of "balls with springs", but this model yetan be in priniple modi�ed to aount independent tunneling of separated nulei. But there exist moreomplex phenomena onneted with the quantum entanglement between eletrons and nulei and betweennulei. The di�ration of a moleule on a slit represents the simplest example of suh entanglement. Herethe whole moleule behaves as a single quantum partile. Suh a phenomenon in prinipal annot besimulated by the method of mean �eld or "balls and springs". These phenomena are alled "olletiveexitations". The known attempts to simulate suh movements are based on serious limitations of themovements of partiles in suh systems. For example, in the work ([NF℄) it is assumed that the partilesare represented by the separated Gaussian wave pakages and thus this way does not give the universalmethod of the simulation of many body quantum systems.One more type of e�ets that are beyond the area of lassial simulation methods is onneted withthe eletrodynamis. The e�et of delay of an eletromagneti �eld ation on a slow harged partile andthe other relativisti e�ets an be always negleted in the omputation of atomi spetra. For example,the Lamb shift of energy levels is of the order 10−3 from the di�erene between the nearest levels. Butin the hemial reations it is not admissible to neglet the e�et of emitting and absorption of photons,for example, in photosynthesis it plays the key role; there exist the methods of ontrol over hemialreations by laser impulses (see ([SB℄,[FTK℄).The neessity to aount the quantum nature of elementary partiles in the study of moleular trans-3



formations was realized long ago, but it is di�ult to do it pratially due to the prinipal di�erenesbetween quantum and lassial forms of dynamis desription. The main di�ulty in lassial many bodydynamis arises from the instability of trajetories. It results in the haoti behavior of the system5. Thisdi�ulty disappears if we assume that the set of values of oordinates and speeds (in the lassial aseit is the spae of all one partile states) is grained as always is assumed in the omputer simulation. Inquantum ase this assumption annot resolve the problem beause the main di�ulty is another. Herethe spae of one partile states is not the set of all values for oordinates (or speeds) but is a linearombination of all suh values. It is impossible to redue suh a state to one value of oordinate andspeed beause of the unertainty priniple: the more exat value of the oordinate we know the biggerdispersion in speed we shall have and vie versa. At the same time for the dynamial desription we mustknow the oordinate and speed of a partile (in quantum ase - the amplitude distribution among alloordinates or speeds). The neessity to use linear ombinations of all values of the dynamial variablesis the prinipal and remains also if we assume that the set of suh values is grained. It leads to theexponential growth of the dimensionality of many partile state spaes that is the main obstale in thequantum ase. Just beause of this obstale the probability methods annot be the main tool in thesimulation of many body quantum systems.Simulation of many body quantum systems has several features that di�ers it from the other problemsof theoretial physis and that reveals the weakness of the onventional analytial formalism of quantummehanis. Here the integral piture is neessary that inludes not only unitary segments of evolutionbut also sequential measurements whih must be treated as independent from the existene of observerthat is hardly ompatible with the onventional analytial quantum formalism. The simulation based onthe analytial formalism thus requires easeless swithes from the quantum desription to the lassialand vise versa. The seond di�ulty is the exponential growth of the spae of states dimensionality inthe quantum simulation. This di�ulty makes the problem of algorithmi desription for the many bodyquantum systems the fundamental sienti� problem, beause it raises the question: how our world isdesigned, does it allow the e�etive lassial algorithmi desription or not. Of ourse, this question inits philosophial form is known for a long time - at least sine the formalization of algorithm. But afterthe invention of a Quantum Computer (QC) this question has turned into the onrete sienti� problemwhih presumes the ertain solution. The point is that there is the lear proedure of veri�ation: is agiven devie a QC or not. If the Hilbert spaes of exponential dimensionality are an adequate formalismthen we have a prinipal possibility to reate a salable QC. This, still hypotheti devie ould solve someomputational tasks substantially faster than any possible lassial omputer. For example, the problemof the fatorization of integers an be solved by QC with almost exponential speedup (see ([Sh℄)), thesearh problem - with quadrati speedup (see ([Gr℄)). It is very important that QC is able to solve manypartile Shroedinger equation in the time of order t2, where t is the physial time, or in other words itan simulate quantum many body dynamis without any simpli�ations!6 The building of a salable QCwould mean the bankrupty of algorithmi approah beause no e�etive lassial algorithm an simulatethe work of QC. Really, if suh a simulation is possible we would obtain the lassial algorithm that solvesall searh problems substantially faster than by brute fore that is impossible7. I will not disuss here theondition of experimental works in quantum omputing that yet have not shown the evident suess (onean address to the general eletroni arhive http://xxx.lanl.gov). The development of QC tehnologies is5The onventional way here is onneted with the appliation of various triks based on the probability theory, forexample, thermodynamis.6The idea of QC was put forward by Feynman, and also Benio� and some others in order to give the new prinipal wayfor the simulation of many body systems. This guess beame the exat result in the works ([Za℄) and ([Wi℄).7Stritly speaking it is not the established mathematial theorem but only generalization of that an be alled "math-ematial pratie", e.g. a meta-mathematial proposition whih an obtain the exat form if we oversimplify it (theChurh-Turing priniple represents a remote assoiation). But the onlusions of suh "pratie" are usually assumed inphysis without objetions. The reason is that suh oversimpli�ation does not streth beyond the frameworks of usualabstration whih is used in the transfer from the natural phenomena to the mathematial formalism. The transfer toalgorithmi approah just is the replaement of one type of formalism (analysis) to the other (algorithms).4
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absolutely neessary diretion in quantum physis that logially follows from the onventional formalism.The logial hain: "algebrai tehnique - many body wave funtion - QC" is absolutely fundamental. Themore detailed investigations of the existing approahes to the reation of QC as solid state quantum dots,ion traps and Josephson juntions (see ([VK℄)) on�rm the natural onlusion: there is no prohibition tothe reation of a salable QC in the known physis. But the progress in the experimental area goes tooslowly that we an onsider the prospets of the reation of QC as a single possibility. Just the abseneof the lear advane in experiments is the main ause of the interest to the alternative - algorithmiapproah that we are going to onsider now.Two moments arouse suspiion that the prohibition of the existing of a salable QC an exist inNature despite of that it annot be derived from quantum mehanis. The �rst moment is onnetedwith the deoherene that is treated as the in�uene of environment to a quantum system and leads to anirreversible orruption of its state. Just the deoherene is usually made responsible for the obstales inthe QC building. The short explanation of the sense of deoherene in the standard quantum mehanislooks as follows. Let the �rst qubit |ψ〉sys denote the state of onsidered system8, |φ〉env - be the stateof its nearest viinity. If we initially prepared the system in a state |ψ〉sys = α|0〉sys + β|1〉sys, andits viinity was in an indi�erent state|0〉env, then it is reasonable to suppose that after the ontat theextended system: "system + nearest viinity" will be in the state whih an be obtained from the initialstate before ontat |Ψini〉 = (α|0〉sys +β|1〉sys)
⊗

|0〉env by the appliation of some entangling operator,for example, CNOT, and it results in the entangled state |Ψfin〉 = (α|0〉sys

⊗ |0〉env + β|1〉sys

⊗ |1〉env.If now the nearest viinity will interat with its nearest viinity, that in turn with its viinity et., we�nally obtain the state of the form α|00 . . . 0〉 + β|11 . . . 1〉 (we omit the sign of tensor produt) wherethe dimensionality grows due to the permanent growth of the hain of viinities denoted by dots. Inthis moment in the framework of standard quantum formalism it is assumed that the observation of oneof these viinities results in the ollapse of the whole state and the initial system will be in one of thestates |0〉sys, or |1〉sys, whih means the ation of deoherene. The weakness of this desription is lear- it requires the presene of an observer that is not permissible in the simulation beause it means thepermanent artifat beause an observer annot be desribed in the framework of this formalism even if wehave a QC. This is the irremovable feature of standard Hilbert formalism for systems of many partilesand it is always simply ignored and replaed by the referene to the lassial harater of a measuringdevie ([Fe℄).The seond moment is that the exponential dimensionality of Hilbert spaes for quantum systemsstates has never been heked experimentally. All the fats approved in experiments and theoretiallyexplained till nowadays an be derived from the theory by e�etive lassial algorithms. It means that thereal physis now lies within the bounds of e�etive algorithms, and there is no ontraditory evidene tothe universality of the algorithmi approah to physis. Pratial methods of omputations that reduetheoretial shemes to e�etive algorithms an be ompliated but its heuristis is usually simple. Forexample in the omputation of wave funtions of stationary states of eletrons in atoms the methodof mean �eld is usually applied instead of the solution of many partile Shroedinger equation, e.g., weonsider the behavior of one eletron in the �eld indued by the others aordingly to the probabilitydistribution of their oordinates. This method gives the satisfatory agreement with experiments, say itallows to �nd a good approximation of the energy of ionization, spetrum and spatial on�gurations ofmoleules. All more exat omputations inluding, for example, relativisti orretions an be obtainedby e�etive lassial algorithms as well.But the quantum formalism of Hilbert spaes says that the exponentially small amplitudes λ, (whihannot be observed diretly in any experiments beause the time 1/|λ|2 needed for their deteting is toolarge) an interfere onstrutively in huge quantities and result in really observable values. In additionthis interferene an be organized so that it �ts in an admissible time. This is the essense of the quantumomputing. But we still do not know are there suh e�ets in the reality or not. At least all the phenomena8Qubit is taken for the simpliity. It an be replaed by a wave vetor in the spae of states of arbitrary dimensionality.5



that have the theoretial substantiation do not require the existane of exponentially small amplitudesfor this substantiation.The algorithmi desription of physis an be thus in priniple possible. If we assume that the suessof approximate methods like Hartree-Fok in moleular omputations is not aidental then it may bereal to reate a general e�etive algorithm for the simulation of many partile systems. Algorithmidesription di�ers radially from the traditional beause it is based on the notion of algorithms insteadof analysis of in�nitesimals; this new formalism an be alled algorithmi physis9. I venture to allthis approah the algorithmi physis; this name implies no analogies but only underlines the prinipaldi�erene between this approah and the onventional understanding of physial theories. In its generalform it an be onsidered now as a hypothesis, alternative to the hypothesis of a salable QC. The singlehane to refute this hypothesis is to build a QC, we see no other way to rejet the algorithmi physisdespite of that it is very di�erent from the usual physis.2 Main features of algorithmi physis2.1 General notesWhy do we need algorithms in physis and why the standard analysis and algebra are not su�ient?Stritly speaking the physis needs algorithms as an auxiliary tool that is designed for the solutionof equations whih express physial laws. Algorithms and omputers are traditionally used in physisforedly, their usage is onneted with the well known fat that the systems of equations expressing themany body dynamis in general ase have no analyti solution. In other words, if even we are able toexpress laws by formulas we annot derive analytially pratially important orollaries (trajetories) fromthem. Just this gap in the traditional formalism was �lled by algorithms. In the algorithmi approah tothe lassial physis the derivatives are replaed by the orresponding di�erene shemes that redue theproblem to the tasks of linear algebra. The main drawbak of this sheme is the instability of lassialtrajetories. Small perturbation in the initial onditions leads to the large divergene in the limited timethat makes the method of �nite di�erenes in many ases ine�ient. But this obstale seems not fatal.The laws of lassial dynamis lose its fore when the distanes beomes less than 10−8 m, beause in thisarea we must use the laws of quantum mehanis. Quantum evolution of a partile is a unitary operatoron its wave funtion that preserves distanes, hene the small perturbation of the initial onditions anonly lead to the small divergene of the trajetories independently of the evolution time (situation willbe di�erent if we admit measurements). At least in quantum mehanis we have no suh an obstale forthe algorithmi approah as in the lassial ase.The algorithmi approah annot in�uene to the part of physis that is already known, beause allthe known fats an be derived from the main laws and from some set of natural and simple assumptionsby e�etive lassial algorithms. The expliit di�erene from the traditional understanding of physisin this approah is onneted to the possibility of the reation of a salable QC whih is allowed in thetraditional physis and forbidden in the algorithmi physis. But this devie still lies very far from theusual experiments and an be treated as a kind of abstration. In addition one ould suppose that if evena salable QC is possible, its pratial implementation is too far from our possibilities in the foreseeable9Mathematial analysis is the traditional sound basis on whih the physial intuition is always brought up. Nevertheless,it is important to understand that everything has its limits. The standard analysis is thus good as the physial formalism upto the moment when it leads to something no omputable. There exists the ut version of mathematial analysis where onlyomputable funtions are onsidered - the so-alled onstrutive analysis. It radially di�ers from the standard analysis;for example, all funtions there are ontinuous. This version of analysis in many respets better �ts to physis than thestandard one. The method of amplitude quanta desribed in the Appendix 1 gives the desription of quantum states just interms of onstrutive analysis. But the method of amplitude quanta is the partiular method, and the algorithmi approahannot be redued to the replaement of standard analysis by the onstrutive one. Partiularly, the usage of disontinuousfuntions is sometimes very fruitful for the onstrution of algorithms. In general, in the algorithmi physis all desriptivetriks are admissible, but only in the framework of the e�etive omputational proedures.6



future, and this argument for the reoniliation with the traditional viewpoint would seem valid. Oneould thus onlude that the algorithmi approah simply re�ets the pratial attitude of programmersto physis and we annot wait from this approah more than improvements of the existing numerialmethods. But this opinion is wrong. Algorithmi approah di�ers radially from the traditional beauseit gives some new understanding of the physial problems and new treatment of suh a key phenomenonas deoherene. The severe limitation of the lassial omputational limits for simulation ditates the"ut-o�" desription of unitary evolution as ompared to hilbertology10. Suh a desription must ontainsoft measurements of a urrent state beause we have no su�ient omputational resoures for the exatsimulation of a unitary many body evolution, and these measurements are su�ient for the simulationof deoherene. We thus must not look for the deoherene speially, beause it arises in the modelindependently of our wish, as the measure of the deviation of the lassial desription from Hilbertformalism for many partiles.The most natural way of suh a "ut-o�" of Hilbert formalism is as follows. We simply do not aountthe deposit of states with too small amplitudes to the wave funtion. Namely, let T be the aessiblesize of a omputational resoure (the number of steps of an algorithm or the number of elements inthe memory). We then onsider as zero all the amplitudes λ suh that |λ| < 1√
T
. It means that weonsider as impossible suh an event whose quantum probability is too small to make it observable in theaessible time frame T . Of ourse, we have no method to determine the fatual value of T , but if wehoose it starting from the apaity of the existing omputers we ould simulate many partile evoltionswith the maximal aount of all quantum e�ets. We thus assume that an amlitude is not ontinuousbut grained, where its grain ǫ - is the minimal nonzero value of an amplitude module is so small thatits diret measurement is impossible beause of the huge waiting time 1/ǫ2 so rare events. But if ǫ isnot exponentially small this must beome apparent in the many body quantum problems, in partiularit makes impossible the reation of a salable quantum omputer.We shall see below that this simple rule of ut-o� easily gives two important things: the explanation ofBorn rule for the alulation of a quantum probability as a squared module of amplitude, and the uniformdesription of a quantum dynamis inluding unitary evolutions as well as a deoherene. Moreover, thisrule makes possible to obtain the lassial desription of dynamis from the quantum desription withoutany arti�ial triks. The desirability of suh a uniform desription was expressed from the very beginningof the history of quantum mehanis11. We produe some reasons for that suh a desription an beobtained in the framework of the algorithmi approah.Aeptane of an algorithm as a basi notion of physis instead of the analytial and algebrai for-malism leads to the far-reahing onsequenes. Computational methods that give a good approximationto experiments must be aepted as a �rst priniple desription where any inauray is regarded as adefet in used algorithms or as a bad initial data. The analytial formalism must be then onsideredas the form of instrutions for the omposing of simulating algorithms and the tool for debugging. Thelimitations of the purely algorithmi nature must be treated equally with the fundamental physial laws.Partiularly it means that the irreversibility of quantum state orruption in a measurement or in a de-oherene must be treated not as the result of the ation of observer but as the result of shortage of theomputational resoure for the desription of urrent state. This treatment is absolutely unaeptablefrom the traditional viewpoint but it leads to no expliit ontraditions. This removes an observer fromthe desription of quantum dynamis and gives to the algorithmi formalism suh a ompleteness that islaking in the standard quantum theory.The following feature of the algorithmi approah is that the model must be divided into two segments:the user segment and the administrative segment that is onneted with the appliability of the "freewill" priniple. All the part where this priniple is valid belongs to the user segment. The rest part of10This term is proposed by Sergei Molotkov.11See, for example the famous polemis between Einstein and Bohr. In several reent works this disontent with thisstrange feature of quantum physis leads to the attempts to �nd its onnetion with the phenomena of onsiousness (see,for example [Pe℄, [Ha℄). 7



a model that ontains the information to whih this priniple is inappliable and whih is only neededfor the right "�lm" showing belongs to the administrative segment. For example, the oordinates of allthe points in the onsidered area of the spae-time belongs to the user segment beause a user has freeaess to this area. Any trajetory in the light one lies in the user segment beause it an be realizedin priniple. In general, any proess that an be desribed in terms of the so-alled loal realism (e.g.,without the quantum long-range ation) must belong to the user segment. The simplest explanationof the neessity of the administrative part is shown by entangled states of photons (EPR pairs). If twodetetors measuring photons are disposed at the large distane one from another then we annot simulatethe detetion of EPR pair by the user part only. Really, let us imagine that the orientation of one detetorhanges so fast that the light signal about this hange annot reah the seond detetor in the time ofexperiment. Having the "free will" in the user part to whih the both detetors belong we an do it andrandomly. The statistis of the seond photon measurements must not then hange in omparison withthe ase when the �rst detetor is �xed, but the joint statistis will hange. If we have the user segmentonly we annot simulate this experiment without the assumption that some objet transmitting a user'sinformation moves along a trajetory whih goes outside the light one that is impossible. We thus seethat the administrative part of the model is neessary for the right desription of the quantum long-rangeation.The weak side of the algorithmi approah is that it an be ontextual. If we limit our onsiderationby lassial algorithms with polynomial omplexity, then for the desription of quantum systems we mustsomehow restrit the growth of the dimensionality of the spae H of states, that means the hoie ofsome subset H0. For example for the eletroni on�gurations of a moleule when the spatial positionsof its atoms nulei are �xed, the hoie of H0 is redued to the hoie of one eletron funtions and theirgroups from whih the Fok-Sleter determinants are formed. But the numerous works on quantum theoryof moleules witness that there an be no universal way to hoose these funtions that is valid for allmoleules. It means that the hoie of basi wave funtions for one partile may depend not only on itstype but also on its viinity, e.g., on the positions of the other partiles (in the ase of moleules it is theposition of atoms). The properties of the partiles essential for the algorithmi approah may depend ona ontent within whih these partile are onsidered. If we speak about the simulation of the dynamisit means that the hoie of subset H(t)0 depends on the state of environment H(tenv)env in the moments
tenv ≤ t, where t denotes here not the physial time but the time in the administrative part, that isproportional to the number of steps of the simulating algorithm12. This onnetion of the onsideredquantum system with the environment is determined by the entanglement and it is unavoidable in anyapproah to the simulation of quantum systems. Hene to desribe the onsidered system and to hoose
H(t)0 optimally it is neessary to have some a-priori model of its behavior. The simulation in the usualsense when we �x the initial ondition independently of the model and obtain the result at the end - maybe sometimes impossible. If we do not know beforehand the form of H0, then the single way will be toonsider the whole Hilbert spae that immediately leads us to the insurmountable phenomenon of QC.This di�ulty results from the following evident fat. The size of omputational resoures that wehave at our disposal an be roughly estimated by the number 109. In the foreseable future this numberan grow 3-4 orders at most, mainly due to the parallel omputations and the reation of omputationallusters. In the same time the number of atoms in the density paking in one ubi entimeter is about
1024. We see that the gap between our omputational apaities and the sizes of systems that we planto simulate is more than 15 orders. If we aount the spatial degrees of freedom that is neessary forthe real simulation even without entanglement, this gap will grow up to about 24 orders. Even if themain hypothesis of the algorithmi approah is right and the Nature is the gyganti omputational net,the diret modeling of suh a net by the known omputational triks that are fatually "alulations byformulas", like the method of �nite di�erenes an be suessful if only the growth of total numbers of12The onnetion of this time with the loal physial time depends on the simulated spae, and we will touh this subjetin the Appendix 2. 8



atoms in the onsidered system does not lead to the substantial hange in its behavior (for example,for regular rystalls). But in the very important ases when the omplexity of the behavior essentiallydepends on the system size suh methods lead to the straight ompetition of our omputer with the realsystem and here we have no hane of suess. Quantum e�ets, entanglement are among suh ases.The existene of suh e�ets is proved in the numerous di�erent experiments but we know too little howthey in�uene to the well known proesses with observable results, for example to hemial reations.Fatually, almost all that an be taken from the analyti and algebrai approah is still embodied inthe diret omputational methods that we spoke about earlier, and moreover - in the existing softwareproduts. In what follows we an believe mainly in the omputational proedures of the di�erent kindthat originate from the so alled semi empirial methods. The geneti algorithms belong to this kind ofproedures. The simulated many atom struture an be divided into the small parts and use the di�erentmethods of �nding of the eletron states in eah part. After some time we an ompare the resultsand hoose from these methods the small number of those whih give the most adequate piture of theevolution. We an then ombine suh seleted methods and replae by them and by their ombinations allthe others. We then repeate this loop again and again varying the parameters of the seletion dependingon what part of the struture they are applied to, et. As the methods we an use: the form of aprobe funtion that approximates the exat wave funtion, or the methods of �nding of the diretionand frequeny of emitted photons, or the form of amplitude quanta trajetories (see Appendix 1). Thepassage to suh purely algorithmi onstrutions in the simulation seems unavoidable.In any ase we must have a-priori representation about the behavior of the simulated system thatwill be spei�ed after eah user's review of the "�lm" based on this representation. The debugging ofthe model will have iterated harater and in eah step of it the user will have more and more exatpiture of the simulated evolution. Just this proess of debugging will replae the axiomati building ofquantum physis (see ([BS℄). Of ourse, it is not a breaking-o� with the tradition quantum theory butthe hange of aents only. For example, the onventional formalism of quantum physis will be not themain instrument but rather the tool for debugging of simulating programs.The aim of this artile is the disussion of some possible ways of the development of algorithmiphysis independently of the general fate of this approah. This disussion an be useful to those whotry to simulate the proesses where quantum e�ets play the substantial role.2.2 User and administrative parts of a modelIt follows from the above explanation that the prinipal di�erene between the algorithmi and standardapproahes results from the nature of algorithms: in general ase there is no method to learn the resultof their work on a given initial data but the sequential ful�lling of elementary steps determined by thisalgorithm13. Some orollaries from this surprising feature are disussed in the next setion. Here weonsider in more details the general struture of the algorithmi model, that has been already mentioned,namely its separation into the user and administrative segments that an be treated as the peuliardisretionary aess ontrol.Sine the model must show the dynamial piture of the system behavior its user segment must ontainthe desription of objets with the physial sense - elementary partiles. The administrative segmentonsists of elements with no physial sense. The neessity of the administrative part is substantiatedby the known experiments (see, for example, ([As℄, [B℄, [Be℄)), establishing the impossibility of the loalrealism in quantum physis or, in other words, the violation of the Bell inequalities.The simplest example showing the neessity of the administrative part in the model for the massivepartiles is the demonstration of its entangled states. We onsider the pure state of the system of the13This thesis remains valid even if we use a quantum omputer for the predition of the work of lassial one. Themajority of not long lassial omputations do not allow quantum speedup even on one step (see ([Oz℄).9



two partiles of EPR type:
Ψ = α|0102〉 + β|1112〉, (1)and try to distinguish it from the mixed state ρ, in whih the frations of the pairs in state |0102〉 and

|1112〉 are |α|2 and |β|2 orrespondingly. To attah the physial sense to this situation we assume that |0j〉and |1j〉 denote the spatial positions of the partile j, j = 1, 2. Intuitive sense of entanglement of the state
Ψ is that not only the oordinates of the two partiles are stritly onneted (here simply equal), but alsoimpulses; this is just the di�erene of the state Ψ from the mixture ρ. If we measure only the oordinatesof both partiles in state Ψ, we obtain exatly the same result that will be if the system is in state ρ, sothis measurement annot distinguish these two ases. But if we measure impulses of these partiles we�nd out the di�erene between Ψ and ρ. If in the �rst ase impulses will be always equal, then in theseond ase we obtain the full dispersion in the measured values due to the unertainty priniple appliedseparately to eah partile whih are independent in state ρ and whih an be thus onsidered as patternsof the same partile that is in the state |0〉, or in the state |1〉. For the substantiation we must turn tothe impulse representation of the wave funtion. In the hosen designations the Fourier transform givingthe impulse representation of the wave funtion an be replaed by its zero approximation: Hadamardtransform of the form
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, (2)that is applied to eah qubit. It is straightforwardly veri�ed that it remains the state Psi unhangedand the following measurement (it will be the measurement of impulses) again gives the equal values forboth qubits. In ase of mixture ρ the situation will be di�erent. Here Hadamard transform applied toeah qubit gives the mixed state in whih there are the both pure states 1
2 (|00〉+ |01〉+ |10〉+ |11〉) and

1
2 (|00〉−|01〉−|10〉+|11〉)with probability 1/2 eah. Hene in the ase of initial state ρ the measurement ofimpulses gives the uniform distribution of impulses of the both partiles among all possible ombinations.One an heked that this onlusion is also valid if we take the �rst approximation of Fourier transform(with the π/2 phase shifts) instead of zero approximation. We see that there exist entangled statesprinipally di�erent from mixtures of not entangled states and suh states an be deteted in experimentsnot only with photons but with the massive partiles as well.We onlude that it is impossible to simulate a wave funtion ollapse and entangled states basingonly on the loal interations, and it is neessary to have the administrative segment of the model. Theadministrative segment is not aessible to users; in partiular they annot obtain its state in a givenmoment. It ontains the data that is alled hidden parameters, but it is important that these parame-ters are not loal - they are onneted with the spatially distant points. The information determiningthe entanglement is stored just in this segment of the model. Users annot address diretly to this ad-ministrative hannels to the information exhange. The simulation of moving partiles has its speialrestritions. We annot simulate an arbitrary speed of the movement beause it is neessary to trae thepassing of a partile through all intermediate nodes of the spatial grid used in the simulation, and eahsuh node requires some amount of the time. There are thus the limits on the possible speed that an besimulated and this limit is determined by the frequeny of the simulating proessor. We thus see that therelativisti limit on the information transfer results from the inaessibility of the administrative part forusers14.We treated the division of the model into two segments as the peuliar disretionary aess ontrol. Forthe simulation it is neessary that the administrative segment, at �rst disposes the omplete informationabout the intentions of a user, and seondly has the possibility of instant aess to the remote points of thephysial spae. We nevertheless assume that the possibilities of the administrative part are not boundlessbut limited in its turn by the theory of lassial algorithms. In partiular, the memory aessible to the14One of the possible ways for the simulation of the relativisti pseudo Eulidean metri in the spae-time is shown inthe Appendix 2. 10



model grows linearly with the size of simulated physial spae. It an be formalized by a multihead Turingmahine, for whih the instant aess means the appliation of rules ontaining states of many heads.It is desribed in more details in Appendix 2. We note here the onnetion between the disretionaryaess ontrol and the appliability of a "free will" priniple. The priority of the administrative segmentin our model fatually means that a user's "free will" is onditioned expliitly on its onnetions withthe unlimited external world15. If there are not suh onnetions a user itself ould be inluded in themodel with the su�ient omputational resoures.2.3 Desription of measurements. Obtaining of Born rule for quantum prob-abilityBorn's rule for the quantum probability has the form
p(A) = |〈A|Ψ〉|2, (3)where A is a vetor belonging to a basis e1, e2, . . . orresponding to the measurement, |Ψ〉 - is a measuredstate. (In the physial terminology e1, e2, . . . is a basis onsisting of eigenvetors of Hermitian H whihdetermins this measurement.) Born rule is the single link of the traditional (openhagen) formalism thatonnets quantum mehanis with the lassial and this rule is assumed as a key axiom in this formalism.The status of this rule makes impossible to obtain a uni�ed desription of quantum dynamis whihwould be independent of the existene of an observer (fatually of an observer's "free will"). This iswhy attempts to derive Born rules from something more fundamental do not end up to nowadays. Theentral point and the main ause of failure in this diretion was the absene of a lassial urn shemefor the quantum probability that would redue Born rule to the frequeny de�nition of probability, andthat would be natural from the physial viewpoint (an arti�ial introdution of an urn sheme is possiblebut it is not interesting). One of the last attempts was done by Zurek (see. ([Zu℄)). His proposal isbased on the operation of swap between quantum states leading to the equality of amplitude modules ofelementary events, that is not ompletely natural from the physial viewpoint. (see ([Mo℄, [SF℄)). Thatproposal is based on the standard approah with Hilbert states in the spirit of Gleason's theorem (([Gl℄),see also ([CFS℄, [Bu℄)16. The desription of Born's rule represented below di�ers from Zurek's in that itis based on an amlitude quantum but not on the swap operation.We give the desription of Born's rule starting from the onept of an amplitude quantum.The onsideration of quantum evolution from the viewpoint of the many partile Hilbert formalismgives the states of the form
|Ψ〉 =

∑

j

λj |ej〉, (4)where the summing is spread to the in�nite set of basi states |ej〉. The algorithmi approah requiresthe onstrition of this sum to the �nite sum by the utting of all the summands with oe�ients λj , whihmodules are less than some �xed threshold ǫ. Suh a sum will ontain no more than 1/ǫ2 summands. Let
N be the number of the basi states for one partile. We an take ǫ = 1√

N
. The resulting state thus hasthe form15By external world we mean not only the marosopi and megasopi universe, but the potential mirosopi universeas well, e.g., the possible struture of elementary partiles.16Already after the �nishing of this paper my attention to the Zurek's interpretation and to the series of artiles onnetedwith it and with Gleason's theorem was attrated by A. Sheverev ([She℄). This theorem says that every nonnegative funtionon vetors in a Hilbert spae of dimensionality more than 2, whih is a probability measure on all basies of this spaehas the form (3) for some vetor Ψ. The limitation on the dimensionality is the indiret evidene of the redundany ofthis theorem for the quantum physis, beause in the reality we always deal with some onrete wave funtion (for thedimensionality 2 the ounterexample is straightforward). 11



|Ψ〉 =

N
∑

j=1

λj |ej〉, (5)where some summands an be zero.This proedure of elimination of all summands whih modules of amplitudes are less than ǫ is alled aredution. This onstant ǫ > 0 is alled an amplitude quantum. We agree to ful�l a redution over eahstate that we obtain in our simulation proess. Suh redued states are alled admissible.We now show how the redution, e.g., nulling of the small amplitudes, gives Born rule for the �ndingof quantum probability. Our aim is to redue the �nding of probability to obtain a ertain basi state Ain the measurement of a quantum state Ψ to the appliation of the lassial rule
p(A) =

Nsuc

Ntotwhere Nsuc is the number of suessful outomes (e.g., suh elementary events whih mean the realizationof the eventA), Ntot - the total number of all elementary events. We have to de�ne the set of all elementaryevents and establish the orrespondene between them and basi states of the system. We all elementaryevents suh basi states of the extended system (measured system + measuring devie) whih amplitudemodules in a given state equal to an amplitude quantum ǫ. A set of elementary events thus depends ona quantum state of extended system.Let |Ψj〉 denote basi states of a onsidered system and |Φj〉 denote basi states of a measuringapparatus (that an be an eye of observer). The ontat between these two objets results in the stateof the form
∑

j

λj |Ψj〉
⊗

|Φj〉 (6)Sine the measuring apparatus is very massive in omparizon with the measured objet, when tryingto desribe its quantum states we have to split the states from (6) to the sums of lj basi states (all statesof numerous partiles inside the measuring apparatus must be taken into aount, like nulea, eletrons,et.). In the other words, even if in the instant of ontat there was the state |Φj〉, the evolution veryquikly transforms it to a state of the form |Φ′
j〉 =

lj
∑

k=1

µj,k|φj,k〉, where all lj grow very quikly up to theinstant when amplitudes reah the value of an amplitude quantum and they will be nulled. Hene all themodules of amplitudes µj,k must be then taken as approximately equal. If we substitute the expressionfor |Φ′
j〉 instead of |Φj〉 into the (6), the amplitude of states φj,k will be about λj√

lj
due to the unitarityof evolution.We have to ful�l the redution that is to null all summands φj,k whih amplitude is too small. Sinethe time frame when the splitting to suh summands happens is negligible, in the omputations it meansthat we split eah summand in (6) to lj new summands so that modules of all resulted amplitudes are loseto the amplitude quantum and approximately equal, beause only this supposition makes this splittingequitable to all the states before the redution that is required for the implementation of a lassial urnsheme17. But the total number lj of the summands with the �rst fator |Ψj〉 is exatly the total numberof suessful outomes, and it is proportional to |λj |2, and if exatly one of them survives in the redutionwe obtain the Born rule for the quantum probability.A probability spae thus depends on the hoie of a wave funtion |Ψ〉. We onsider fatually theonditional probabilities to obtain this or that result in the measurement of the system provided it is17Approximate equality of amplitude modules before the redution orresponds also to the urn sheme based on amplitudequanta; see, for example, Appendix 1. 12



initially in a state |Ψ〉. We note that despite of the apparent narrowing of formulation omparatively toGleason's theorem just suh probability spaes have the physial sense.This explanation of Born rule is based on the notion of redution of quantum state as the nullingof too small amplitudes. We agree to ful�l this redution at eah step of the simulation of a quantumevolution beause otherwise the simulation would be impossible at all. In our approah the spei�ity of ameasurement omparatively with the unitary evolution is only quantitative: a measurement happens in aninstant when the system omes into ontat with the massive objet that an be alled an environment.It results in the splitting of the sumnads in (6) to the big number of new summands. In addition tothis natural supposition we used only the norming of the wave funtion whih onservation results fromShroedinger equation. In the explanation of Born rule no suppositions were applied that exeed thebounds of onventional agreements of quantum mehanis but one: the redution of a wave funtion thatis treated as a nulling of small amplitudes. Just this proedure of redution transforms the set of Feynmanpaths to the lassial trajetory in ase of a massive body (see Appendix 1). We treat the deohereneas the forming of entangled states of the (6) with the environment e.g., we do not distinguish it from themeasurement of our system. Born law for the quantum probability and irreversible orruption of a stateresulted from the deoherene thus follows from the grain of amplitudes.Algorithmi approah thus gives the uni�ed desription of a unitary evolution and a measurementthat gives the independent of an observer desription of quantum dymanis. This is the advantage ofalgorithmi approah, beause the onventional formalism does not give suh a desription and dependsprinipally on the presene of observer18.In the algorithmi simulation we thus must not espeially aount that somebody observes our system.Moreover, an observer itself (if any) an be inluded to the simulated system without any hange of thesimulating algorithm, provided this observer is independent of environment. The single reason that makesimpossible to simulate itself (that would lead to logial ontraditions) is insurmountable limitation ofthe somputational resoures, beause for the exat simulation of some system the other system is requiredwhih is muh bigger.2.4 Hierarhial model of quantum many partile dynamisThe entral point of the algorithmi approah is the hoie of subset of states H′ of the simulated systemwhih desription must grow not too fast when the number of partiles inreases. The admissible speed ofgrowth is the linear beause only in this ase we have at least a theoretial possibility to reate in future(with the most powerful of lassial omputers) "�lms" desribing the behavior of the living matter19.The hoie of suh a subset H′ is the radial break with the many partile Hilbert formalism and with thehope to simulate a salable quantum omputer. This subset in the general ase is not a subspae beausewe base not on analytial properties as linearity but on a possibility to desribe an evolution by e�etivealgorithms. From the traditional viewpoint it means that we hoose the approximation to the solution ofmany partile Shroedinger equations. There is too big unertainty here to use purely algorithmi heuristitriks like geneti algorithms, and we have to expliitly point the form of this subset. We start with theevident for the algorithmi approah limitation on the omplexity of the quantum state notations for npartile system, that is the length of this notation in terms of sums and tensor produts must be limitedfrom above by some onstant20. It is naturally to assume that this onstant must depend linearly from
n. We show how the quantum dynamis an be simulated in terms of suh states. We represent some18That immediately raises the question about what objet posesses the status of observer. All who onsidered thefoundations of quantum theory notied this paradoxial situation. It is important that suh a dependene of quantum theoryon an unintelligible objet whih auses the deoherene (and the unlear treatment of the deoherene itself) deprivedquantum theory of the possibility to submit all area of moleular phenomena, and �rst of all suh phenomena that areruial for the funtioning of living organisms.19Even in the ase of quadrati speed this hope will disappear.20See ([Aa℄). 13



heuristi arguments for it that issue from the feature of algorithmi approah and partially generalize theknown set of omputational triks used in quantum alulations. The main of these arguments is thatthe method proposed is losest to the one partile desription in sense of the algebrai notation of states.The diret method of simulation looks as follows. We onsider not an evolution of a wave funtion
|Ψ(t)〉, but an evolution of a pair of the form |Ψ(t)〉, P (t), where P = {x̄1, x̄2, . . . , x̄L} is a set of pointsof division of the on�guration spae for many partiles suh that their density is proportional to thesquared module of the wave funtion: ρ(t) ≡ 〈Ψ(t) | Ψ(t)〉, and their total number L = 1

g2 , where g isa given value of the amplitude quantum (that is mush less than the value existing in Nature). For thesimpliity we an assume that these points are loated so that the di�erene sheme for Laplaian foreah of the partiles in the onsidered system is appliable with them. Moreover, we an assume thatthat for every �xation of any s − 1 partiles the total number of the points of division for the rest oneand their density obey the same law. The following wave vetor |Ψ(t+ ∆t)〉 then is obtained from |Ψ(t)〉by the appliation of the dinite di�erene sheme for Shoedinger equation and the new set of the pointsof division P (t + ∆t) is obtained from the new wave funtion aordingly to the ondition of densitystated above. For the improvement of the values of the new wave funtion in intermediate points whihare inluded in the new division we an use the methods of approximation (for example, splains). Suh amethod is based immediately on an amplitude quantum value and it allows to aount the entanglementof every type between the simulated partiles in the framework ditated by this value. But just due to itthis method an be not e�etive, beause the real value of g an be muh less than that is addmissible tothe real superonputers. We then desribe the approah whih is more universal for the omputations.It is based on the oneption of the hierarhy of partiles and the diret method will work as a part of itin the moment when this hierarhy will be rebuilding.Sine our aim is to learn how to reate realisti "�lms", all our approah must be based on theonept of partiles whih will be the main objets of suh "�lms". For the salability we must keepin mind that every partile (perhaps, but photons only) an onsist of more elementary partiles andour approah must admit the orresponding salability. We thus onsider some groups of partiles aspartiles as well; for example nulei, atoms and moleules, or more speial groups as Cooper eletronpairs and quasi partiles, e.g., all the groups whih an be onsidered as a whole partiles. Here weonsider a group as a partile if the appliation of Shroedinger equation for one partile (that is the singletype of Shoedinger equations whih an be solved by lassial omputers) gives the sensible result forthis objet. We further onretize this informal explanation. We separate the lass of maximal partilesonsidered in the model - they will have the zero level, whereas the elementary partiles whih annot besplitted by using the onsidered interations will have the biggest level. We restrit our onsideration byeletromagneti interations, thus in our ase eletrons, photons and nulei will have the biggest level21.We onsider two main omputational tasks: the simulation of unitary evolution, e.g., the modelingof operator exp(− iH
h t), and the �nding of eigenstates |φk〉 of some Hamiltonian H . Let us estimate thetime required for it if we use the diret method. For simpliity we onsider a system with 2 partiles.For suh a system the total number of basi states is N2. The matrix of Hamiltonian has the dimension

N2 × N2 and one step of the evolution requires N4 elementary operations, hene for the time frame tthe total number of them annot be less than N2t, that takes plae for the method of �nite di�erenesapplied to Shroedinger equation. For the task of �nding eigenstates we have to solve the harateristiequation for the matrix of the size of the order N2 ×N2, that requires about N12 operations. If we usethe spae grid with 10 points to eah dimension that is the less admissible auray for one partile wehave N = 1000 and the �nding of eigenstates of two partile Hamiltonian requires 1036 operations thatmakes the diret method useless even for superomputers and partiular tasks where the Hamiltonianhas symmetri form. In the pratial omputations for suh tasks the onventional methods are: the21Nevertheless, the proposed approah is seemingly appliable to the nulear interations as well. At least, the possibilityof ranging in the line to the inreasing of embedding depth of partiles is exists in the hierarhial model. It is onvenientfor the uni�ed desription of the di�erent types of interations, for example, eletromagneti and nulear.14



method of density funtionals (see ([LA℄), or Hartree-Fok method. Hartree-Fok method is based onthe representation of many partile wave funtion for a system of n idential fermions as a Fok-Sleterdeterminant (see ([Sl℄)).It means that we aount the entanglement between partiles that omes from their exhange in-teration but not from Coulomb interation. To aount the entanglement that omes from Coulombinteration we should represent the wave funtion as a sum of determinants of the form (16):
∑

j

µj |Ψj〉. (7)But this representation ontains the in�nite row and the diret generalization of Hartree-Fok methodto this ase gives a boundless problem instead of robust method for (16) beause we have no guidelines forthe hoise of µj , for example, if some of them is not negligible in omparizon with ǫ, we annot aountthe orresponding summand. The density funtional method does not aount the entanglement at all;it is �ne for the ases where the density of wave funtions is almost the same (for example, for eletronsin metals), but for atomi and moleular omputations this method gives a big error.We now desribe the method that makes possible to aount all the types of entanglement betweenthe partiles in the assumption that the real amplitude quantum g is muh less than the value of ǫ whihis equal to 1√
T
, where T is the total number of elementary operations of the fastest real superomputerin the maximal time frame in our disposition.The maximal partiles are alled the partiles of the zero level. The partiles of the �rst level will bethe biggest parts of partiles of the zero level, et. The hoie of partiles of a level n thus means thehoie of the grouping of partiles of the level n+ 1; in the �rst step this is the task for a user. For thefurther steps we will formulate the rule for the hange of this hierarhy. The general reommendation isonly that this proedure must give the objets to whih the appliation of the notion of wave funtionsand Shroedinger equation leads to the sensible result. Eah partile a of the level n thus has its spatialoordinates xa, ya, za and spin oordinate sa. These oordinates an be often treated as oordinatesof the entre of mass Ca of the set of minimal partiles forming a and all partiles inside of a. Let

a1, a2, . . . , as be the partiles of level n+1 that form a. Their oordinates in the oordinate system whihinitial point is Ca are alled the relative oordinates.In what follows we will use the qubit notation of wave funtions |Ψ(r̄)〉 in the form
∑

r̄

λr̄ |r̄〉 (8)where r̄ is a binary notation of numerial value of oordinates of all partiles in the onsidered system;let the length of this string be n. Here a value of an ordinary wave funtion |Ψ(r̄)〉 is proportional to λr̄.We assume the natural lexiographi order on the string r̄ whih exatly orresponds to the ase of onepartile in one dimension spae, but our onsideration will be general.22 Sine we agree that any partileof a level k − 1 is loated in the enter of mass of the partiles of level k that form it, in this group ofpartiles a �xation of all but one partile determins a oordinate of this one (relatively to their enterof mass). These partiles whih oordinates an be arbitrary, are alled valuable. Let k = 0, 1, . . . , nenumerate the levels of hierarhy. We denote by r̄k the initial segment of sequene r̄ of the length k,and by rk - k-th element of this sequene, that has the form of list rk = (r1k, r
2
k, . . . , r

sk

k ), where rj
k arethe relative oordinates of j-th valuable partile of a level k, sk is the total number of suh partiles; forexample, if any partile ontains exatly two partiles of the next level, then sk = 2n−k−1. If the upperindies are not used we an assume for simpliity that rk is the single qubit - this simpli�es our notations.22The representation of wave funtions in the form (8) is muh more onvenient than in the traditional for physiists form

|Ψ(r̄)〉, beause the last form is ambiguous, it means two di�erent things: the wave funtion and its value in a onretepoint r̄ (so that to tell apart these two senses physiists often write integrals with delta-funtions).15



Eah wave funtion of the form (8) an be represented as
∑

r1

(

λr̄1 |r1〉
⊗∑

r2

(

λr̄2 |r2〉
⊗

. . .
⊗∑

rn

λr̄n
|r̄n〉

)

. . .

) (9)For this it is su�ient, for example, to take all λr̄j
equal to 1 for j = 1, 2, . . . , n− 1, and for j = n to setit equal to λr̄ from the formula (8).If we �x some value of j, the amplitude distribution λr̄j

an be treated as some wave funtion; weassume that it is normed. Aordingly to our agreement it an be determined by some e�etive algorithm
fj , whih ode is denoted by [λ̄r̄j

], so that fj(r̄j) = λr̄j
. Let Kj denote the set of lists of the form r̄j , andlet Fj be suh a funtion on Kj−1, that Fj(r̄j−1) = [fj ]. We will onsider suh states only for whih allthe funtions Fj j = 1, 2, . . . , n an be omputed by some �nite and �xed set A of e�etive algorithms.Sine a �xation of all funtions Fj uniquelly determines a state, all suh states will be determined by a�nite set of e�etive algorithms, where the length of odes of suh states will be limited from above bysome linear funtion of n, e.g. of the number of partiles in the onsidered system. We note that in viewof the last remark the states separated by (9) and your agreements represent the narrow sublass of allstates (with the agreement about amplitude quantum). But the omputations with the desribed lassof states does not require the immediate storage of amplitude quantum in the memory; we have to storethe odes of algorithms instead, that generate amplitude distributions - it makes possible to work withmuh less amplitude quantum than is allowed by the memory.Several sublasses an be introdued by the imposition of additional onditions. If all the funtions

Fj depend fatually not of the whole list r̄j−1, but of oordinates rj−p, rj−p+1, . . . , rj−1 only, we all suhstates the states of depth p. The sublass of states of the depth 0 onsists of non-entangleg states. Ifeah distribution λr̄j
ontains only one nonzero element, we obtain the set of basi states.We denote by |Ψr̄k
〉 a wave funtion ∑

rk

λr̄k
|r̄k〉, whih obviously depends on a hoise of r̄k−1. It is awave funtion of the system of all partiles of level k, that depends on a hoise of oordinates of partilesbelonging to the lower levels, enveloping partiles of level k. We now treat this dependene in moredetails. Let A be Hermitian in the spae of states of a system Sk pariles of level k. Its mean value isthus determined aordingly to the quantum rule

〈A〉Ψr̄k
= Tr (A|Ψr̄k

〉〈Ψr̄k
|). (10)In partiular we an �nd the mean value of every omponent of the system Sk, and the potential Vk(r),reated by this system in a point r. Given an external potential V , we an �nd the potential V ′(r̄k−1) =

V + Vk(r), whih ats on a partile of level k − 1. If we are given initially eigenstates for partiles oflevel n we an thus ompose the Hamiltonian for partiles of level n − 1; then �nd its eigenstates andthus ompose the Hamiltonian for partiles of level n− 2, et., up to the biggest partiles of level 0. Anabsolute oordinates of a level k an be obtained as a sum of sequentially nested partiles up to the level
0. It turns out that a spatial �xation of partiles of levels k − 1, k − 2, . . . , 0 determins an amplitudedistribution for level k, that is required in the de�nition.A step of unitary evolution an be thus realized for a state of hierarhial system by some numerialmethod, for example, by �nite di�erenes. For partiles belonging to the same tier we thus apply themethod of diret simulation. It is important that operations performed over amplitude distributions inthis modeling and the resulting distributions lie in the set A of hosen e�etive algorithms.If we limit the total number of points in the spae by a value L (or �x a spatial grain), the quantityof eigenfuntions of every level and the maximal number of partiles in eah set Sj , then the memoryrequired for the storage of any state of the form (9), will grow as a polynomial of the numberN of partilesof the biggest level (elementary partiles) and the degree depends on L. The hierarhial representationof wave funtions given by the formula (9), is not then equivalent to the many body Hilbert formalism,where the growth must be exponential. Newertheless the hierarhial representation of many body states16



gives the prinipal possibility to sale the quantum simulation not only for the systems onsisting ofelementary partiles (atoms, moleules), but also inside elementary parties.We now desribe how the de�ned hierarhy is varying in the time.1.) Lowering of a partile to one step in the hierarhy. We suppose that for the states of the form(9) the simulation of unitary evolution (with the mandatory redutions) leads to that a state of somepartile of a level k in eah of funtions |Ψr̄k−1
〉 is separated as a tensor multiplier. We then delare thispartile to belong to the level k − 1 with the orresponding rebuilding of amplitude distributions. Thispartile will then interat with the other partiles of the level k − 1 aordingly to the orrespondingHamiltonian.We thus an desribe the tearing o� eletrones from a moleule resulting from the Coulumb attrationof a lose ion or an absorbed photon. Given initially two eletrones in a Fok-Sleter state we onsider thesituation when the simulation of unitary dynamis with redutions leads to the growth of the distanebetween their one partile wave funtions. The determinant then turns to one summand and we have thedesribed situation. The situation with photon absorbtion an be onsidered analogously. Here we musttreat the states of the form
∑

j

λj |Ψj , fj〉, (11)where fj ∈ { photon in state ψj , no photons} (see below).2.) Lifting of a partile a to one step in the hierarhy. This proess is reverse to the previous and it isonneted with the reation of new entanglement between partiles whih were not entangled before. Apartile a then is inluded to the tier subordinate to one partile - b with whih a was in the same levelbefore. The riterion determining the moment for suh a proedure is as follows. During the simulationof the dynamis of system of two partiles a and b as a system of two interating partiles its statebeomes entangled within the preision of simulation, and this entanglement does not dissappear afterfew steps. This riterion requires the diret many partile simulation. If we want to manage with onepartile simulation only we an use the di�erent riterion:K). In the simulaton of system onsisting of independent lassial parts a and b it omes in that a�xation of oordinates and impulse of one determins the oordinates and impulse of the other within theauray of simulation.This rebuilding of hierarhy is the most nontrivial operation in the simulation, beause it establishsthe entanglement between partiles whih were independent before. The hange of hierarhy representsthe omputational trik beause the entanglement that arised initially in the immediate simulation ofmany body system (quantum or lassial) turns to the hierarhial entanglement after the plaing ofinitial point of the new oordinate system to the enter of mass of a previously non- entangled system.Remark. We ould introdue the speial proedure of measurement whih is performed in themoment when the arrier of wave funtion of some partile beomes disonneted, e.g., omes apart toseveral omponents of onnetivity D1, D2, . . . , Dk. The measurement then would be the projetion ofwave funtion to one of these areas aordingly to the Born rule. But suh a proedure in ontrast to theredution does not orrespond to any omputational priniple and annot be assoiated with any realproess; the value of suh a proedure would be purely aestheti, beause it preserves the onnetivity ofthe wave funtion arrier (that has indiret relation with the eonomy of the omputational resoures).For the disintegration to the di�erent onnetivity omponents (whih an be far one from the other) thegeneral desription of a measurement proedure is appliable. This desription is based on the redutiononly and does not need any additional suppositions. This is beause we do not introdue the speialproedure of measurement.We then de�ne the division of the on�guration spae for partiles in the hierarhy, that is neededfor the numerial methods. If the points of the division are distributed uniformly it would result in a lot17



of redundant work, beause the majority of basi states would have amplitudes whih modules less than
ǫ and the orresponding summands will dissappear in the next redution. In the area of big amplitudesthe points of division must be disposed more densely beause just these areas more in�uene on theevolution. In the passage from the onventional for analysis the disrete representation of ontinuousfuntions through the division of an interval by points x1, x2, . . . , xk to the qubit representation (5) wemust hoose these points so that the impat of the partile in one of the intervals of division orrespondsto the basi state in the linear ombination. It an be reahed if we use a non-uniform distribution of thedivision points. How the density of the division points must depend on a wave funtion to minimize theomputational resoure required for the simulation of unitary evolution? If we start from the lassialurn model for the quantum probability (see below) we should dispose the points so that they orrespondto the elementary events. Namely, let ρ(x) be the density of division points for on�guration spae.If λ(x) is the wave funtion in its ontinuous representation the following ondition must be ful�lled:
ρ(x) = C |Ψ(x)|2 with some onstant C. It guarantees the onservation of the wave funtion norm duringthe simulation. This trik with the non-uniform density of division points gives the best aordane withthe proedure of state vetor redution when we ignore the small amplitudes. The idea of non-uniformdensity of the division points an be generalized to the hierarhial representation of a many partilesystem.For the simpliity we onsider the ase of two partiles of the level 2 that form a partile of thelevel 1. (The generalization to the ase of many partiles is straightforward.) The points of division ofon�guration spae for the 1 level partile are distributed aordingly to our agreement about the densityand their total number is [1/ǫ2]. If x is the point of division for the 1 level partile that orresponds to theamplitude λ, then the total number of division points for one partile of the level 2 is [λ

ǫ

]. The quantumevolution is simulated by the iteration of two steps: a) one step of the evolution of 2 level partiles whenthe 1 level partile is �xed, and b) one step of the evolution of 1 level partile where the state of 2 levelpartiles is �xed (in its oordinate system). The simulation then requires the same total number of stepsas with the uniform distribution of the division points but in the areas of bigger module of amplitudethese points are distributed more densely that better orresponds to the ideology of simulation than theuniform distribution.For the desription of ensembles of idential partiles of high levels of nesting (for example, eletrons)the representation in terms of eigenstates of energy is muh more onvenient than the language of o-ordinates, beause suh partiles emit photons that hange their states. It does not hange the geheralsheme of hierarhial desription, only eigenstates of the orresponding Hamiltomian are assoiated withthe whole tier and by basi states |r̄〉 we mean not a spatial positions but eigenstates of Hamiltonians.For the determining of the absolute oordinates of partiles belonging to high levels of nesting we must,of ourse, pass to the oordinate representations of wave funtions, though absolute oordinates an behardly needed for anything.The �nding of eigenstates requires the diret simulation that we will now onsider. The starting pointis that eigenstates Ψ satisfy the following equation
δ

δΨ
E(Ψ) = 0, E(Ψ) =

∫

Ψ(r)∗HΨ(r) dr (12)This is the equation in variations of the wave funtion Ψ is equivalent to the system of ordinary equationsof the form
∂

∂λj
E(Ψ) = 0 (13)for eah j, where the wave funtion Ψ is onsidered as the funtion of λj . Pratially the system (13)an be solved by the sequene of steps. On eah of them we hoose the diretion of the most inreasingof the funtion E(Ψ). The realization of eah step requires the total number of operations proportionalto the total number M of division points of the ommon on�guration spae, where M = Nk, N is the18



total number of division points of one partile spae, k - the number of partiles. The total number ofsteps has the order N 1
3 , that gives the total number of operations of the order Nk+ 1

3 . For a many bodysystem an initial wave funtion is typially hosen in the form of a tensor produt of one partile wavefuntions:
Ψ(r̄1, . . . , r̄k) = Ψi1(r̄1)Ψi2(r̄2) . . .Ψik

(r̄k). (14)The desribed method of the minimization of energy must be at �rst applied under the ondition thatthe general wave funtion has the form (14). It means that we vary funtions Ψij
, �nding the minimalenergy. As we �nd the set of one partile wave funtions that give the minimal energy, we turn to thequbit representation of wave funtion (e.g., to the form (9)), and then ontinue the energy minimizationmoving to the entangled states.The diret simulation for the partiles of the same tier represents some di�ulty if we annot introduethe hierarhial order on them, as in the ase of many eletron states in atoms or moleular strutures.The algorithmi realization of the diret method requires the extremely large resoures onsumption23,hene we now desribe one trik that an valuably simplify the simulation.The idea of this trik is to aount in the minimization of energy not all variations of wave funtionsbut only suh that orresponds to the basi states with the su�iently large amplitudes. Here we willstore wave funtions in the form maximally lose to (14). We will deal with the representations of wavefuntions in the form of formulas, and assume that the storage and the operation over these funtions areful�lled aordingly to suh formulas. We aggree, that in tensor produts the one partile wave funtionsare enumerated in the �xed order, and in the qubit representation of every one qubit wave funtion asa sum on all values of oordinates these values are hosen in the �xed order as well (for example, in thelexiographi). We shall not separate the spin oordinates from the spatial oordinates. Given a funtion

Ψ(r1, r2, . . . rk), we all its symmetrization a funtion of the form a
∑

π
Ψ(rπ(1), rπ(2), . . . , rπ(k))(−1)σ(π),where the summing is spread on all permutations π, σ(π) denotes in the ase of fermions the parity ofpermitation π, and 1 in the ase of bosons. The stogare of a wave funtion in the form of tensor produt

|Ψ〉ind = |Ψ1(r̄1)〉
⊗

|Ψ2(r̄2)〉
⊗

. . .
⊗

|Ψk(r̄k)〉 (15)is muh more e�ient than in the form ∑

ī

λij
|j〉, beause in the last ase the summing is spread on theexponential number of summands. After the symmetrization (15) we obtain the wave funtion in theform

1√
k
D(|Ψ1〉, |Ψ2〉 . . . , |Ψk〉; r̄1, r̄2, . . . , r̄k), (16)where D is the determinant or the permanent (dependingly of the type of symmetry of the system -fermioni or bosoni) whih is built on the wave funtions and oordinates. We denote by Sym|Ψ〉 theresult symmetrization of a wave funtion |Ψ〉 of fermioni or bosoni type. The funtion (16) an berepresented as Sym(|Ψ〉ind). This symmetrization an be applied to any wave funtion, in partiularto those whih are represented in the qubit form, where it means the omputations of determinants orpermanents of the amplitudes λs

j , where s- is the number of partile, j - is the number of basi state.We onsider here only fermionil ensembles. Sine the omputation of determinants for given values ofoordinates has the polynomial omplexity of te total number of partiles, the presene of symmetrizationin a simulation does not lead out from the framework of e�etive algorithms.The funtions of the form Sym(|Ψ1(r̄1)〉
⊗

|Ψ2(r̄2)〉
⊗

. . .
⊗

|Ψk(r̄k)〉) are alled the funtions of zerorange of entanglement. These funtions from the algebrai viewpoint are entangled beause they annotbe represented as tensor produts. But the storage of suh funtions does not require any substantialadditional memory in omparizon to the non-entangled funtions (15), justi�es these name.23Many dimensional grids of varying density an be easily built in the ase of not entangled states only. For the entan-glement of the general form the building of suh grids is di�ult.19



A representation of wave funtion of the form
|Ψcan〉 = Sym(

∑

j∈J

λj |Ψj〉) (17)is alled a anonial representation if the following onditions are satis�ed:
• All the states |Ψj〉 are k- partile mutually orthogonal normed states.
• Eah state |Ψj〉 has the representation of the form ⊗

h∈H(j) |Ψj,h〉, where for eah j ∈ J either
H(j) onsists of one element only and |Ψj,h〉 is a basi state of our system (eah partile in somepoint) of the form |r̄〉, or H(j) onsists of k elements h1(j), h2(j), . . . , hk(j) and eah |Ψj,h〉 is onepartile normed wave funtion of the form ∑

l

λj,h
l |l〉.The algorithmi approah imposes the polynomial restrition to the number of elements in the set J . Byvirtue of the �rst ondition of orthogonality for any spatial (and spin) on�guration |r̄〉 = |r1, r2, . . . , rk〉of the onsidered system if 〈r̄ | Ψcan〉 6= 0, then there is no more than one value of j, suh that

〈r̄ | Ψcan〉 = λj λ
j,h1(j)
r1

λj,h2(j)
r2

. . . λj,hk(j)
rk

(18)We then an hoose suh ombinations of values for j, and r1, r2, . . . , rk that the module of amplitude ofa basi state r̄ â |Ψcan〉 〈r̄ | Ψcan〉 is not less than the hosen for omputations value g of the amplitudequantum. The hoie of suh a ombination an be done in the logarithmi time of 1/g independently of
k if the number of elements in J is �xed. Really, we have to searh all diretly written amplitudes in thestate (17) in desending order of their modules; the amplitide resulted from the multipliationb in (18)dereases exponentially and we reah g in the logarithmi time. We thus an searh in the polynomialtime of 1/g all su�iently large amplitudes in the anonial representation of state, despite of that thesimple expansion of tensor produt even with the �xed g gives the representation of the length growingexponentially with the number of division points in the on�guration spae.Let we are given a anonial representation of spae of a range d of the form (17). A anonial repre-sentation of a range d+ 1 for this state an be obtained as follows. We hoose some spatial on�guration
r01 , r

0
2 , . . . , r

0
k along the rule de�ned above so that the orresponding basi state is not a simple summandin (17). Then it orresponds to some value j. Let for eah s = 1, . . . k the funtion |Ψj,hs(j)〉 have theform |Ψ′

j,hs(j)
〉+λj,hs(j)

rs |r0s〉+ |Ψ′′
j,hs(j)

〉 where |Ψ′
j,hs(j)

〉 (and |Ψ′′
j,hs(j)

〉) - are the summands whih ontainall the preeding (all the subsequent) to r0s values of oordinates of one partile. The representation ofthe funtion |Ψcan〉 in the form of a state of range d + 1 is obtained if we replae in (17) the summand
|Ψj〉 by the expression
(

k
∑

s=1
λ

j,h1(j)

r0
1

λ
j,h2(j)

r0
2

. . . λ
j,hs−1(j)

r0
s−1

|r01 , r02 , . . . , r0s−1〉
⊗

(|Ψ′
j,hs(j)〉 + |Ψ′′

j,hs(j)
〉)⊗

k
⊗

b=s+1

|Ψj,hb(j)〉
)

+λ
j,h1(j)

r0
1

λ
j,h2(j)

r0
2

. . . λ
j,hk(j)

r0
k

|r01 , r02 , . . . , r0k〉.
(19)We thus onsider the same wave funtion in the di�erent forms. It follows from (19) that this replaementgives the anonial representation of it. Suh values of j for whih H(j) onsists of one element are alledthe main values. A main value of j orresponds to ertain values of oordinates of all partiles r̄(j).We an ful�ll the minimization of energy by the varying of amplitude orresponding to this value; thisminimization results in the hange of λj and the orresponding renormalization of the rest amplitudes

λj′ where j′ 6= j; here all wave funtions |Ψj′,hs(j′)〉 remain unhanged. We start the proess of energyminimization with the states of zero range. In eah step number d we have a state of range d, whih energyis minimized by the alternate �xation of all main values of j and varying of the orresponding amplitudes.20



After that we hoose the di�erent representation of this state of range d+1 for whih the minimization ofenergy by the help of new main value relults in the hange of state, et. This proess allows to minimizeenergy so that at eah step we use the most eonomial representation of wave funtion. If a step ddoes not already give the dereasing of energy in the passage to states of range d+ 1 we assume that aneigenstate is found for a given value of amplitude quantum. Let E1
d , E

2
d , . . . , E

fd

d be all energies obtainedby the sequential minimization up to a range d starting from a state of loal minimun of energy Ed′ ina range d′ < d, we all the values Ed′ − Ef
d energy defet. The values of energy defets haraterizethe in�uene of omplexity of entanglement to the energy of the orresponding states for a given type ofinterations.2.5 Diret simulation in the form of seondary quantizationThe diret appliation of the method desribed above is di�ult due the huge dimensionality of Hamil-tonians in the oordinate form. This sheme is muh easier to implement for the wave funtions rep-resented in the form of seondary quantization. We say that a partile with wave funtion Ψj belongsto j-th energy level. In this ase a funtion Sym(|Ψ1(r̄1)〉

⊗ |Ψ2(r̄2)〉
⊗

. . .
⊗ |Ψk(r̄k)〉 is denoted by

|n̄〉 = |n1, n2, . . . , nL〉, where nj equals to the quantity of suh l, for whih il = j (population of j energylevel). Suh funtions form the orthonormal basis of spae of states. The general form of wave funtionwill be
∑

n̄

λn̄|n̄〉. (20)A Hamiltonian in this spae has the form
H =

∑

k,l

vk,lc
+
k cl +

1

2

∑

k,l,m,n

vk,l,m,nc
+
l c

+
k cmcn (21)where operators of reation and annihilation of a partile in an an energy level j have the form

c+j |n1, n2, . . . , nj , . . .〉 = (−1)σj(n̄)(1 − nj)|n1, n2, . . . , nj + 1, . . .〉,
cj |n1, n2, . . . , nj, . . .〉 = (−1)σj(n̄)nj|n1, n2, . . . , nj − 1, . . .〉,

σj(n̄) = n1 + n2 + . . .+ nj−1,

(22)for fermions, and σj(n̄) = 1 for bosons, and matrix elements have the form
vk,l = 〈Ψk | p2

2m + V1 | Ψl〉
vk,l,m,n = 〈Ψl,Ψk | V2 | Ψm,Ψn〉and an be found by the integration on the spatial degrees of freedom and summing on spins by thestandart rules (here the onjugation of tensor produt hanges the order of its omponents, V1, V2 areone and two partile potential, p is the impulse operator.In this notations our proess of energy minimization looks as follows. We start with some state |n̄〉,whih depends on a hoie of funtions Ψj , whih must be orthonormal. By small variations of eigenstates

Ψj we reah a loal minimum of energy of a state |n̄〉 for some hoie of these funtions Ψ0
1,Ψ

0
2, . . . ,Ψ

0
L.After that we �x this basis in the spae of oupation numbers and begin the further minimization ofenergy passing to nontrivial linear ombinations of the form (20). At eah step d we have a funtion ofthe form |Ψd〉 =

∑

n̄
λd

n̄|n̄〉. For every n̄ in the order of dereasing of their amplitude modules we ful�lthe minimization of energy along all diretions of the form |n̄〉 + λ|n̄′〉, for whih |n̄′〉 = c+k c
+
l cmcn|n̄〉 forsome ombinations k, l,m, n. The resulting state will be |Ψd+1〉. The iteration of suh steps gives a loalminimum of energy, and orrespondingly, an eigenvetor of the Hamiltonian (21). A value of dereasingof energy in omparizon with the basi state is an energy defet.21



We show roughly what algorithm for a hydrogen moleule an be obtained from this approah. Thisis the system onsisting of two protons and two eletrons that move in the alternating external eletro-magneti �eld. The detailed onsideration of this problem requires the aount of the �eld dynamisthat obeys Maxwell equations. We will not onsider it in full generality and neglet the deposit of spinsand vetor eletromagneti potential into energy. We thus onsider the Coulomb interation only andspins are involved only through Pauli priniple. The distribution of partiles to the levels depends onthe on�guration of a system and it an hange in time aordingly to our rules. For example, in thereation of joining of two hydrogen atoms to the moleule initially the third level partiles are eletronsand protons, the seond level partiles are the pairs proton + eletron, the �rst level partile is the ob-jet onsisting of these two atoms e.g., the future moleule. Sine protons are muh more massive thaneletrons we an assume that at the begining protons are the partiles of the seond level, and eletronsare the partiles of the third level where eah of them belongs to the tier of its proton. In the stationarystate of hydrogen moleule the hierarhy looks otherwise. Eletrons will be the third level partiles,the seond level partiles will be: eah of the protons and the pair of eletrons, the �rst level partile -the moleule itself. If we neglet the photon emission the simulation of suh a system looks as follows.For a given arbitrary but �xed position of protons we ful�l one step of �nite-di�erene method of theeletron dynamis simulation. We ful�l this step for eah position of protons where the division pointsare distributed aordingly to the rule formulated above. We then do one step of the proton dynamissimulation by �nite-di�erene method. This two step proedure is then iterated. Sine the proton partof the wave funtion will hange muh slower than the eletron part, we an ful�l many steps of eletronsimulation for a �xed proton position. Here the herarhy an either remain unhanged, or hange - de-pendingly of the initial onditions. In the �rst ase the simulation gives the endless omplex osillationsof four partiles.Now we will not neglet the emission of photon, e.g., onsider the problem in the more generality. Fora separated hydrogen atom we assume that its proton is �xed and omsider the eletron dynamis. Forbasi states Aj we take the energy eletron eigenstates and the spae-time photon states. For example,the proess of emission of a photon by the eletron that is initially in state 2s will look as the sequeneof states of the form
S1, S2, . . . , Sj , . . . , (23)where eah joint state Sj of the atom and photon has the form

Sj = 1√
j
(|Ψ2s〉

⊗ |φ0〉 +
j
∑

r=1
|Ψ1s〉

⊗ |ψr〉,
|ψr〉 = exp(iφr)Ω(c r∆t)

⊗

(|0〉 + |1〉)
(24)where |φ0〉 is the vauum state, φr is the phase fator, Ω(R) is the harateristi funtion of spherial layerof the radius R, c is the speed of light, and the last fator orresponds to the polarization. The photonenergy is thus exatly determined and the time of emission is ompletely non-determined. Nevertheless,it follows from the representation (24) that the probability of emission onverges to 1 if the time goesto in�nity. Indeed, by virtue of the wave funtion redution we have to hoose one summands from (24)with the equal probability. One step of eletron movement simulation orresponds to the numerous stepsof the photon simulation beause just the photons reate the potential determining the harged partiledynamis. That is even for the small number of iteration of the �nite-di�erene sheme for eletrons jwill be su�iently large for that we an assume that the emission has been happened and the aton is instate 1s. The system of two eletrons in the �eld of two protons is onsidered analogously, so that weonlude that always the ground state of eletrons must be onsidered if only there is no external �eldand the movement of protons is negligible.Considering the joining of two hydrogen atoms to the moleule we thus assume that the both eletronsare initially in state 1s. The hange of hierarhy looks roughly as follows. When the protons lose in22



the eletrons loose the rigid onstraint with their protons and lift in the hierarhy to the level 2. Theirommon state beomes strongly entangled due to the symmetrization and their pair an be onsideredas the new partile of the level 2, where eletrons themselves beomes the partiles of the level 3, thatompletes the forming of new hierarhy of the stationary hydrogen moleule state. We note that thishierarhy is very onvenient for the �nding of eletron pair eigenstates: the initial point of the oordinatesystem is plaed to the middle of segment onneting protons. The time inversion gives the inverse proess:the dissoiation of hydrogen moleule resulting from the photon adsorbtion. Our approah embraes allknown types of movements in the hydrogen moleule inluding its forming and deomposition, osillationsand rotations. The forms of spetrum an be thus found that orresponds to all these types of movements.But our method also embraes the movements of moleule that annot be desribed in terms of lassialdynamis. These movements result from the entenglement between all these four partiles. Algorithmiapproah is thus more general than analyti.The desription of quasi-partiles represents the speial problem that arises in the simulation ofsystems similar to a rystal, that onsist of a big nimber of partiles. We do not touh this problem here.2.6 E�ets following from the algorithmi proedure of redutionThe algorithmi redution proedure of a wave funtion (in what follows - AR) is a nulling of the toosmall amplitudes. This proedure is prinipally di�erent from the onventional ollaps of a wave funtionin that AR gives the lassial urn sheme and Born law of quantum probability, whereas the ollaps doesnot; thus the ollaps is inluded to the quantum theory as an axiom. Born law an be treated as themain "e�et" following from AR. This "e�et" is not the single. The AR proedure gives immediately thelassial desription of a dynamis if the orresponding Lagranjian ation along the onsidered trajetoriesis large in omparizon with Plank onstant (it has been mentioned by Feynman in ([FH℄) without expliitusing od AR proedure, see also Appendix 1 of this work). AR thus gives the automati passage fromquantum to lassial dynamis so that it is not neessary to take are of it when programming. If weonsider a partile in two lose potential holes with the high barrier then in the algorithmi approah notunneling happens beause it is bloked by AR, whereas in the onventional theory tunneling takes plaefor any barrier. This interesting e�et of "bloking" of the quantum properties must be ampli�ed in themany partile ase in the passage to entangled states whih we treat as the subordination of partilesto the same partile of a smaller level. Really, if two partiles are not entangled then eah of them aredesribed by its state vetor of the form |Ψk〉 =
N
∑

j=0

µk
j |φk

j 〉, k = 1, 2. If they are entangled, its stateis ommon and has the form |Ψcom〉 =
N
∑

j,j′=0

λj,j′ |φ1
j 〉
⊗ |φ2

j′ 〉. Here for eah �xed of the seond partilestate j′ the vetor of state for the �rst partile will be de�ned with the resolution N times less than forindependent partiles. This dereasing of the resolution represents the "bloking" of quantum states inentanglement. For example, it an lead to the impossibility of tunneling that is peuliar to independentpartiles, and as a orollary - to the stability of the many partile states that are de�ned by the lassialmethod - as a minimal potential energy but not as a groundstate of the Hamiltonian. E.g., the situationsare possible when some parts of omplex quantum strongly entangled system an be better desribed bythe lassial means.2.7 Some remarksWe proeed with the general omments on the pratial realization of the method on the real omputersthat impose the more severe limitations on the omputational reourses than the abstrat algorithms on-sidered above. The methods of �nite di�erenes are applied here to one partile only. In the omputationof one step of the unitary evolution for a partile of level m we assume that all partiles of the major23



levels are �xed in the spae, whereas the spatial positions of the minor partiles subordinate by hierarhyare averaged by the quantum law. In the moleular simulation we an treat the nulei of atoms, eletronsand photons as partiles of the zero level, atoms as partiles of the �rst level and moleules and ions aspartiles of the seond and the next levels. For the most ases we an limit our onsideration by the �rstthree levels of hierarhy. As mentioned above, the states of eletrons onsisting in the same tier must besymmetrized by the Fok-Slater method. One more assumption about the almost unitary segments ofevolution we an assume to simplify omputations. In many ases when the auray of the photon wavefuntion desription an be negleted we an assume that eletrons in the time of unitary evolution areeither in the states with ertain energy or instantly move from one of suh states to another and emitor absorb the photon aordingly to the law of onservation of momentum24. The eletrons thus antravel between the energy levels permanently only in the lifting or lowering in the hierarhy or if they areonsidered as not entangled partiles. This assumption means that we neglet the form of photon wavefuntions. In all likelihood25 suh a onsideration is su�ient for the majority of moleular proesses,even for those whih are substantially onneted with the emitting and absorption of single photons.It is obvious that the omputations annot be performed in the real time mode of showing the "�lm".Hene even for isolated problems we should use the databases for eletron states for �xed nulei, thedatabases for photon radiation rate for all possible eletron energy levels and the databases for theproblems of simple dispersions (no more than 3 partiles). These databases an be dynamial e.g., theyould be formed in ourse of one proess simulation and then disarded. But there are some databaseswhih must be stored and gradually spei�ed. For example, the databases for the stationary positions ofnulei in moleules and rystals and the orresponding states of eletrons whih form valene bonds andBrillion zones, and nulei in the superpositions of spatial states (protons in hydrogen bounds), intensityof emanation and absorption of photons of the di�erent impulses and polarizations for eletrons andnulei transition between suh states. Suh databases an aount only a small number of lose hargedpartiles.In addition, the desription of the majority of movements will be fatually lassial (espeially it istrue for the massive partiles as nulei); hene eletron states must be often treated as lassial potentialswhih determines the lassial interations of nulei only, as in the Born-Oppenheimer approximation.It makes sense then to ompose the databases of lassial potentials reated by suh eletron states(and, may be, the states of tunneling nulei). For the nulei onsisting in the stationary moleules theselassial potentials have the form of elasti potential kx2, where x is the spatial oordinate k is theonstant determined by the model of loal struture; thus only suh onstants k must be stored.3 ConlusionWe outlined the general ideas of the algorithmi approah to physis that is based on the fundamentalnotion of an e�etive lassial algorithm. The key assumption of this approah is the possibility tosimulate a system of arbitrary omplexity on lassial omputers with the polynomial omputationalburden. This approah does not ontradit to anything established in experiments up to nowadays, butforbids the existene of a salable quantum omputer, whih is allowed in the onventional quantumphysis. We have desribed the approximate form of a lassial algorithm designed for the simulation ofsystems for whih quantum e�ets play an important role. This algorithm is based on the hierarhialrepresentation of quantum states for a many partile system, when the whole tier of partiles of the samelevel is in the entangled state and is treated as one partile of the next level. A unitary evolution of suha system is simulated by one partile quantum dynamis only. Transitions of the individual partilesbetween the levels in this hierarhy are admissible and it makes possible to simulate hemial reations.24Of ourse, when omputing the eletron impulse the impulses of all enveloping partiles must be taken into aount.25Though it is not exat fat. 24



The e�ieny of this algorithm is guaranteed by the proedure of redution that eliminates all the statesin superpositions whih module of amplitude is less than some �xed value alled an amplitude quantum.The rules we have formulated for the simulation of quantum dynamis exatly express the onventionalquantum mehanial desription through tensor produts of Hilbert spaes with only one restrition: wenull all too small amplitudes. In the framework of this limitation we aount all e�ets resulting fromquantum entanglement between all the partiles in the onsidered system independently on their tiers.The division of the partiles into tiers is only needed to eonomize the omputational resoures in thesimulation by the possible using of peuliar one partile triks.We saw that the redution proedure that is treated as the nulling of too small amplitudes is in prini-ple su�ient to the simulation of deoherene. This way makes possible to aount all elenemtary eventswhih probability is not less than 1
T , where T is the amount of the time we have at our disposal. Thisapproah to the deoherene is very easy for programming and does not require any speial desription ofthe environment besides the evident fat that the omputational resoures an be distributed among thedi�erent parts of the physial spae. The redution immediately gives the lassial urn interpretation ofthe quantum probability and Born rule for it that will be shown also in Appendix 1. At least the redu-tion transfers the quantum desription of evolution to the lassial without any additional suppositionsthat will be demonstrated in Appendix 1.The algorithmi approah thus gives the uniform desription of a quantum dynamis without itsdivision to the unitary dynamis and measurements; this desription is also independent of the preseneof an observer.The further analysis of an amplitude quantum is not neessary for the onstrution of the simulatingalgorithm. Nevertheless we give the more vivid interpretation of amplitude quanta through the Feynmanpath integrals in Appendix 1. The idea of one possible way of representation of pseudo-Eulidean metriin spae-time is desribed in Appendix 2. We underline that our approah in not an interpretation ofquantum theory. It is rather the introdutory part for the instrution on its pratial implementation tothe omplex systems. Just as the partiular triks desribed in the both Appendies annot be treated asthe desription of some mehanisms; it is the omputational triks only that are not the single possible.They touh two priniples: the probability interpretation of wave funtion and the onservation of thepseudo-Eulidean metri in the transition from one inertial frame to another. These two priniples annotbe redued to more elementary things but they are known long ago in physis. It is shown how theyan be represented in the framework of algorithmi approah if we do not introdue it to the modelbeforehand.Referenes[VK℄ K.A.Valiev, A.A.Kokin, Quantum omputers: dreams and reality, Mosow, Izhevsk, RXD, 2000.[AB℄ A.Ahiezer, V.Berestetsky, Quantum eletrodynamis, M.GTTI, 1953.[Aa℄ S.Aaronson, Multilinear formulas and Septiism of quantum omputing, lanl e-print,quant-ph/0311039[Ak℄ V.Akulin et al., Non-holonomi ontrol, (to be published in SPIE Proeedings), previous version:lanl e-print quant-ph/0403227[BS℄ N.N.Bogolubov, D.V.Shirkov, Quantum �elds, Mosow, Nauka, 1983[As℄ A.Aspet, Bell's theorems: the naive view of experimentalist, lanl e-rint quant-ph/0402001[B℄ Y.Bogdanov, M.Chekhova, S.Kulik, G.Maslennikov, C.Oh, M.Tey, Preparation of arbitrary qutritstate based on biphotons, (to be published in SPIE Proeedings), lanl e-print quant-ph/041119225
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[SF℄ M.Shlosshauer, A.Fine, On Zurek's derivation of the Born rule, lanl e-print, quant-ph/0312058[Mo℄ U.Mohrho�, Probabilities from envariane, lanl e-print, quant-ph/0401180[Bu℄ P.Bush, Quantum states and generalized observables: a simple proof of Gleason's theorem, lanle-print, quant-ph/9909073[She℄ A. Sheverev, private ommuniationAppendix 1Amplitude quanta in Feynman path integralsThe sheme of possible model for quantum evolutions shown above is based on the proedure ofredution whih must be applied to eah quantum state. Just this proedure guarantees the limitation ofquantity of the summands in the notations of quantum states, and hene the e�etiveness of this algorithm.This proedure an be assumed unonditionally in the algorithmi approah and just it fatually imposesa ban on the reation of a salable quantum omputer, whih is allowed in the onventional quantumphysis. Nevertheless we show that this proedure an be made more sensible. Really, we have tolimit somehow the minimal size of amplitudes of states in quantum superpositions, e.g., to introdue anamplitude quantum. We show the way whih looks the most physial and whih is based on Feynmanpath integrals. In addition, the desription of quantum evolutions based on amplitude quanta is lose tothe lassial and the transfer from the lassial desription to the quantum by this way looks very easy,whereas the invesre transfer is based on the redution proedure only.Amplitude quanta were introdued in the work [Oz2℄ on purpose to give a diret interpretation ofBorn's quantum formula for the probability in terms of a lassial urn sheme, and this aim was reahed.In this work we modify the notion of amplitude quanta in order to obtain the better simulation ofquantum evolutions than the method of �nite di�erenes. Partiularly, we require the easy transfer fromthe lassial desription of dynamis to the quantum and vie versa that is important for example, for theproblems of moleular dynamis. The following ondition is that the desription of quantum dynamismust be independent of an observer, and the deoherene (that is the permanent soft measurent ofquantum states) must be in-built in the model. Feynman path integrals (see. ([FH℄) is the form ofquantum formalism whih is the most appropriate for this aim. In this formalism the amplitude ofpassage of a partile from the point 1 to the point 2 is represented as the integral
K(2; 1) =

∫

exp

(

i

h
S[x]

)

Dx, S =

t1
∫

t0

L(x′t, x, t) dt (25)over all possible trajetories x(t), that go from 1 = (t1, x1) to 2 = (t2, x2), where the Lagranjian L =
Ekin −Epot is the di�erene between the kineti and potential energies; for example in ase of a partilein salar potential Ekin = p2

2m for impulse p, Epot = V (x). The funtion K is alled a kernel, or Greenfuntion (for the wave equation) and S is the ordinary lassial ation along the trajetory x.Path integrals are onvenient for us beause they make possible to pass to the lassial desriptionof dynamis. The lassial equation for trajetories has the form δS
δx = 0; e.g., the small variations oftrajetory do not hange the ation. It gives the simple pratial rule for the passage from the lassialdesription to the quantum and vie versa. Let we use a method of �nite di�erenes with the step ∆t forthe solution of lassial equations. We onsider the element of ation ∆S = L∆t, orresponding to thisstep. If ∆S ≫ h, then the lassial desription gives the right piture; if ∆S ≈ h, we must pass to thequantum desription. The initial distribution of oordinates an be taken as gaussian, so that the wave27
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funtion in the initial instant has the form Ω(x̄) exp(i p̄
h x̄). And vie versa, in the quantum simulation thepassage to the lassial simulation must be ful�lled if ∆S beomes more than Plank onstant h, beausetrajetories far from the lassial give the deposits to the kernel that destrutively interfere with eahother26. By virtue of our agreement to ful�l the redution over all the states it leads to that when theation is large enough all the paths with nonzero deposit beome lassial. If we obtain the kernel by theformula (25) then the wave funtion of our partile in a moment t2 is expressed through this funtion ina moment t1 by the formula

Ψ(t2, x2) =

∫

K(t2, x2; t1, x1)Ψ(t1, x1)dx1. (26)The partiular form of Lagranjian is not important for us, the more ompliated expressions are allowed,for example, it an depend on the seond derivative of x by time, - it requires only little extension ofthe internal memory of amplitude quanta. In the framework of Hilbert formalism for many partiles theformulae (25) and (26) are true in the many partile ase as well, provided by a trajetory we mean atrajetory of the orrespondent many partile system. Now we turn bak to the one partile ase. Weadmit that the total number of suh trajetories is limited from the very beginning and the orrespondingpartile is moving along eah of these trajetories. These �tiious partiles are alled amplitude quanta(a.q.)27. We ould apply the ollision model for a.q. to guarantee the haoti harater of a.q. movement.Changing of the regime of ollision we ould try to eonomize omputational reourses required in thesimulation. But in fat we need only to hange somehow tarjetories from point to point haotially, andfor this the ollisions are not needed.Bounded amplitude quantaWe now onsider a.q. in more details. An amplitude quantum is a point objet whih moves in threedimensional spae. In eah time instant (we assume that the time runs eaually in all the spae) a.q. αhas the dynamial parameters: oordinates, speed, denoted by x(α), v(α), and speial parameters aswhih we in this setion onsider an amplitude denoted by λ(α), (phase and mass an be used instead ofamplitude), and we all suh a.q. bounded. In the next setion we will onsider free a.q. whose speialparameter is a type whih takes 4 values.A.q. are denoted by small Greek letters α, β, γ, the dynamial parameters of a.q. α are designedby x(α), v(α), and the speial parameters by τ(α). At �rst we onsider the simplest version of a.q.where τ(α) = λ(α) is the amplitude assoiated with α. We assume that set of values for oordinates
x of a.q. onsists of the nodes of grid with step ǫ that an in general depend on the ooredinate. Letthe oordinates of a real partile be measured with auray δ = rǫ, r integer28. One position of a realpartile then orresponds to (δ/ǫ)3 positions of a.q. All these positions �ll the ube Cδ,ǫ

l,n,m, whih onsistsof points of the form lδ + ǫj,mδ + ǫk, n+ ǫs, where j, k, s ∈ {0, 1, . . . , r − 1}. Hene, given the positionsof all a.q. the amplitude of that the real partile is in a ube Cδ,ǫ
l,n,m is

∑

α: x(α)∈Cδ,ǫ

l,n,m

λ(α). (27)We denote by Kǫ the set of all a.q. in the onsidered area with the aount of their oordinates andspeeds determined with the auray ǫ, and their speial parameters in time instant t, where the lowestindex will be often omitted.26The element of ation depends on the value ∆t, whih is not arbitrary. It annot be very big beause we then would nothave the right method of �nite di�erenes. It imposes the restritions to the area of appliability of the lassial mehanis.But ∆t annot be made arbitrary small as well beause we then risk not to �nish the quantum simulation at all.27This de�nition makes possible to simulate the dynamis numerially but yet does not give the urn model of probabilities;to obtain suh a model we must further split these a.q. to the more elementary a.q. (see below).28It is not onvenient to assume that always δ = ǫ beause a wave funtion would then have a very disontinuous form.28



If we �xe a value of δ, we an obtain trough this formula the orresponding amplitude distribution,e.g., the wave funtion whih is denoted by |ΨKǫ,δ〉. The area of spae where the density of a.q. is notvanishing is alled the a.q. bubble orresponding to the onsidered real partile. A.q. are thus treatedas idential opies of the real partile; these opies di�er only in their oordinates and speeds.The �rst step is to establish how a.q. speeds and amplitudes must be transformed in the ollisionsa.q. (or the ollisions with nodes of spatial grid) for that fro all t |ΨK(t)ǫ,δ〉 is a solution of Shoedingerequation within C(M)tδ3 (M is the total number of a.q.), or in other words, for that in ase of steadyHamiltonian with this auray the following equation is satis�ed
|ΨK(t)ǫ,δ〉 ≈ exp

(

− i

h
Ht

)

, (28)and in ase of time dependent Hamiltonian his equation is satis�ed again but in sense of hronolohrono-logial exponential.Transformations of a.q. parameters in a.q.ollisions (or ollisions with nodes of grid) are representedin the form of reations
v̄1, x̄1, λ1, ∆t1; v̄2, x̄2, λ2 −→ v̄′1, x̄

′
1, λ

′
1; v̄′2, x̄

′
2, λ

′
2,where ∆t1, ∆t2 is the time past from the previous ollision of the �rst and seond a.q. In view of formula(27) the main role in the detremining of a quantum state play the numbers λ(α). We determin thetransformation of these numbers in ollisions as follows

λ′j = λj · e
i
h
∆Sj , j = 1, 2, (29)where

∆Sj = Lj∆tj , Lj = Ekin − Epot (30)is the Lagranjian of j-th a.q. omputed in the point lying in the middle of the way from the previousollision. New speeds an be obtained from the ondition that all the ollisions are elasti. Here thedi�erent variants are possible, for example we ould assume that if amplitudes λj interfere onstrutivelythe ollision is less elasti and more similar to adhesion, if the amplitudes interfere destrutively theollision is lose to elasti. These triks an eonomize the omputational resoures. In fat the simplestway is to assume that the speeds of all a.q. after ollisions are distribured randomly and uniformlyindependent of the previous speeds of the olliding a.q. We then sum the numbers λ(α) for all a.q. α,ontaining in the ube Cδ,ǫ
l,n,m in time instant t. The obtained value of the funtion |ΨKǫ,δ〉 is the requiredapproximation of the real wave funtion of onsidered partile provided the trajetories of all a.q. aredistributed randomly and uniformly among �nal points for all time instants. Really, in this ase theomputation of kernel by formula (25) an be approximately represented as the summing of numbers

λ(α) over all a.q. α ontained in the ube orresponding to the point 2 provided all initial a.q. were inthe ube orresponding to the point 1 and the sum of all λ(α) for a.q. in the initial instant is equals1. Our proedure of �nding |ΨK(t2)ǫ,δ〉 is then an approximation of the formula (26), e.g. it gives theapproximation of wave funtion in the moment t2 provided |ΨK(t1)ǫ,δ〉 is an approximation of it in theinstant t1.The formula (27) is then the disrete analog of Feynman path integral (25). The auray of thisapproximation is the more the less numbers |λ(α)| are. If we assume that the amplitude is grained, e.g.that there exists the amplitude quantum g, then the maximal auray is reahed when |λ(α)| = g. Thissituation is onsidered in the next setion.The numerial experiments show that in most ases the ollision model gives no eonomy and evenslow down the simulation. The reasons for the ollision model for a.q. are as follows. We onsider thesystem of partiles moving haotially so that the single potential is the potential of ollisions with the29



other partiles29. If the mean trak length of partiles is large in omparizon with their size and its totalnumber is large then suh a system an be treated as a Marko� proess, namely as a model of Brownianmotion (see. ([Hi℄))30. Let u(x, t) be the density of partiles in point x in instant t, then the densitysatis�es the equation of heat ondutivity31.
ut =

1

2
Cuxx, (31)where C is a onstant, and its solution for u(x, 0) = δ(x− x0) has the form of Gauss urve

u =
1√

2πCt
exp

(

−x− x0

2Ct

)

. (32)On the other hand, let us onsider the quantum evolution for a free one dimensional partile whih is atrest initially and has the Gauss amplitude distribution proportional to exp
(

−α
2 x

2
). If we �nd its kernelby the formula (25) then we obtain (see ([FH℄) for the details):

K(x2, t2, x1, t1) =

(

2π ih(t2 − t1)

m

)−1/2

exp

(

im(x2 − x1)
2

2h(t2 − t1)

)

. (33)substituting it to the formula (26) and alulating the wave funtion of free partile we an �nd thedensity of probability to �nd this partile in a point x in an instant t it will be proportional to
exp

(

−αx2 1

1 + α2h2t2

m2

)

. (34)Comparing formulas (34) and (32) we onlude that all densities have Gauss form but the density ofBrownian partiles spreads faster in small times than the bubble of a.q. for free partile. Really, if theboth densities are equal initially then for small t the oe�ient of the exponent for Brownian partileshas the form 1 − At whereas for a.q. it has the form 1 − Bt2 with positive A and B. It would seemthat it testi�es against Brownian model for trajetories of a.q. But this drawbak an be orreted. Thepoint is that in ourse of reations between a.q. the permanent redistribution of a.q. will go betweenthe di�erent areas of simulated spae. If an amplitude quantum did not ollide for a long time we agreeto redistribute its amplitude among the other a.q. proportionally their own amplitudes32 (the analogousation takes plae in ase of free a.q.). It makes possible to prevent too fast spread of a.q. bubble. Thesimilar proedure is neessary for the desription of eletromagneti �eld where photons are emitted bythe harged partiles. Imagine that the a.q. bubble has the shape of sphere whih radius varies in time:
{r : |r| < R(t)}, where the redistribution and reations go in the spherial area on the border of thesphere {r : R(t)− ǫ < |r| < R(t)}, where ǫ > 0 is su�iently small and no reations between a.q. happeninside the area {r : |r| < R(t) − ǫ}. What would happen with a.q. density in suh a redistribution? The density on the onsidered narrow border will orrespond to the wave funtion of the partile.Sine this density has Gauss form everywhere, it will be equal to |Φ(t)|2 inside the bubble despite ofthat the reations and redistributions go on the border only. The ollision dymanis thus guarantees the29Stritly speaking it is yet not a Brownian motion. This motion is obtained if we onsider ollisions of a.q. with lesssized partiles that makes the trajetories of a.q. absolutely haotial; it is not signi�ant for our purposes.30Bashelier tried to investigate this model (about 1900), but the equation for the density of partiles in Brownian motionwas obtained by Einstein (1905); further suh proesses were treated by Wiener (1923-38) and Levi (1937-40).31Really, let φ(y, t) be the fration of partoiles whih shifted in a time t from x to x + y. We assume that it has thedispersion Ct, and symmetry. From the de�nition of φ we then have u(x, t + t1) =

∫

R
u(x − y, t)φ(t1, y)dy and now it issu�ient to expand u to the row of degrees of t1 and apply the both assumptions to obtain the equation of heat ondutivity.32We an eliminate suh a quantum and reate the new one with the same speed and oordinates orresponding to theamplitude distribution. 30



required a.q. density almost without the reations and redistributions - they are needed on the borderof the bubble only. The same reasoning are true for a free partile with the nonzero mean impulse. Thisqualitative reasonings show that the ollision model is in priniple good for Feynman trajetories at leastfor free partiles, beause this model maintains the right form of density itself and it ould proposedlysave the omputational resoures omparatively with the seah of trajetories by various methods likeMonte-Karlo. Our reasonings are approximate beause we aount a.q. only quantitatively, whereas thewave funtion is obtained from a.q. through the formula (27). But in ase of free a.q. their quantitativedensity will better orrespond to the wave funtion that makes our reasonings about the ollisions moresensible. We note that in a.q. model we an assume that all modules of amplitude parts λα of a.q. areequal and they di�ers in phases only that makes interferene piture after the summing.Simulation with a.q.A.q. model is based on the a.q. dynamis, their redistribution and the omputation of the wavefuntion. We desribe these steps sequentially.At �rst we make one important remark. We have assumed to divide the model into two parts: the�rst is aessible to users and the seond aessible to the administrator only. For example, we denotethe user (physial) time by t, and the simulation time (the time of administrator, or omputer time) by
τ . It an be understood as if a user observes the "�lm" that is shown to him by the administrator andin this "�lm" the time �ies aordingly to the sale t. But the reation of this "�lm" requires the othertime; and just this time whih has sense for the administrator only and whih is equal to the quantity ofsteps in the simulating algorithm we denote by τ . The "�lm" is interative and a user an interfere in it,the time sale τ will be then torn and the simulation must be started anew. The part of model aessibleto a user must orrespond to the real observable world and we shall onsider it in this setion. The mainnotion here is the spae. The spae must be represented as the three dimensional grid with the small step
∆x where all diretions are equivalent; we thus admit only suh spatial positions that oinside with thenodes of this grid. The movement of poinwise partile is then represented as sequential jumps from onenode to the neighboring. We do not admit the skip over several nodes beause it would make impossibleto detet a partile in the intermediate positions 33. We then obtain that the time of simulation ∆τwill be proportional to the distane overpassed by a partile in the physial time ∆t. That is the samephysial time frame ∆t requires the di�erent osts of omputer time ∆τ , that is proportional to the speedof partile34. Imagine that the spae is potentially in�nite: we are always able to assemble the new nodesto the grid. For the simulation of a partile moving with the speed v in the �xed time frame t it is thusrequired the simulation time τ proportional to v. It means that we annot simulate arbitrary speeds. Thephysial speeds aessible to the simulation must be limited by the value proportional to the maximaladmissible time of waiting of the "�lm" τmax (and of ourse to the frequeny of the simulating proessor).Coordinate and impulse representation of wave funtion in terms of a.q.We onsider the passage to impulse representation of wave funtion in therms of a.q. Let we are givena reservoir with a set K of a.q. suh that the orresponding wave funtion of partile |ΨKǫ,δ〉 is omputedby the formula (27). We suppose that

• The value ǫ is so small that there are a lot of small ubes of the size ǫ, that ompose the onnetedmassive and for whih the values of wave funtion found by the formula (27) are lose.33There is one more reason against suh skips over nodes. If the speed is high and the trajetory is lose to some singularpoint where the potential onverges to in�nity then in ase of suh skips the movement of partile would depend not on itsinitial position only, but on the initial time instant that is unaeptable.34We do not onsider relativisti e�ets here. 31



• Due to the haoti harater of ollisions in the hosen model we an assume that the a.q. impulsesare distributed by the Gauss law inside of eah small ube.We hoose an arbitrary value of impulse of the partile: k0, and show how to �nd the value of wavefuntion of a given state |ΨKǫ,δ〉 in the impulse representation. The onventional way is ti apply Fouriertransform:
Ψ(k)〉 = A

∫

R

Ψ(r)e−irkdr. (35)Sine eah a.q. has not only the oordinates but also the speed, e.g., impulse, we an introdue the newamplitudes µ by the phase shift of amplitude parts of the quanta:
µα = λαe

−irαkα . (36)Substituting into (42) the expression for the wave funtion from (27) and using (36) we obtain
Ψ(k0)〉 = A

∑

α

µαe
irα(kα−k0). (37)Due to our assumption about the distribution of a.q. impulses we obtain that in this sum all the summandsorresponding to suh α that |kα − k0| > ǫ for su�iently small ǫ give the negligible deposit and we anwrite the approximate equation

Ψ(k0) ≈
∑

α: |kα−k0|<ǫ

µα. (38)It means that it is easy to pass from the set K of a.q. to the oordinate representation of wave funtionby (35) as well as to its impulse representation by (38); in the both ases this is the simple summing ofa.q. of the speial form. The single ation we need to ful�l to obtain the impulse representation is thephase shift (36) (for the symmetry we ould inlude the half of this shift to the a.q. type the omplexityof omputation of the oordinate and impulse representations will be then the same.Amplitude quantum representation of many body systemsThe passage to the system of many partiles in the amplitude quanta representation is natural. Let
S1, . . . , Sk be the partiles in the same tier (usually k = 2). We assume that some lists of the form

α1, . . . αk (39)a.q. of these partiles form an objet alled amplitude quantum of the whole system. A trajetory forsuh an a.q. is then de�ned naturally; ollisions are de�ned as the events when these omplex objetsour in some area of the on�guration spae, et. The remark about the density of the division pointsremain valid for the many partile ase as well.For suh omplex a.q. the rule of transformation of amplitude parts is de�ned again aordingly to(29), where the ation along a given path of suh a quantum is de�ned as usual taking into aount thekineti energy of all its omponents and its potential energy. If the total number of a.q. is large thismodel gives the same dynamis as Shroedinger equation for many partiles.Let us onsider how Born rule an be derived from the a.q. approah. Suppose, for example, that wemeasure the spatial position of one eletron. It means that the ontat between this eletron and a manypartile system takes plae when the omplex a.q. of the form (39) arise. For the distintness let a1denote an eleton a.q., and the other elements of the list denote a.q. of partiles ontained in the measingdevie (inluding photons) so that there suh partiles among them whih point to the measured positionof the eletron - denote them by a2, . . . , as, s < k. As usual we assume that the modules of amplitude32



parts of all omplex a.q. are approximately equal and are lose to the value of amplitude quantum ǫthat is essentially less than amplitudes of a separate eletron. The own evolution of the eletron anbe then negleted beause the measurement of its oordinates presumes very intensive interation withthe measuring devie; and we must simulate the evolution of the omplex system eletron + measuringdevie. Let we be interested in the hit of eletron to some volume ∆V with the oordinates of entrum
x. Among all omplex a.q. there are suh for whih the position of eletron a.q. a1 is in ∆V . Their totalnumber l, of ourse, does not onneted with any amplitude beause as+1, . . . , ak take arbitrary values.But due to the huge total number l of omplex a.q. and that their module of amplitudes are lose to theminimal value, l must be proportional to |Ψ(x)|2, beause the simulated evolution is unitary35. It meansthat if we hoose arbitrarily a omplex a.q. of the system eletron + measuring devie, the probability toobtain the position of measuring devie orresponding to the target eletron position will be proportionalto |Ψ(x)|2, with the fator independent of x. This is the lassial urn sheme giving Born rule for thequantum probability.In the framework of a.q. method it is not easy to represent a measurement of many partile systemaordingly to the Hilbert formalism piture, e.g. in the form of expansion of the unit operator to thesum of mutually orthogonal projetions36. It is easy to desribe a measurement of one partile in anensemble - it was done above. Suh a measurement gives the information about the whole ensemble onlyif the partiles strongly interat. For example, if we onsider a measurement of position of atomi nuleusthen the a.q. of nuleus disposed far from the �rst ollision of a.q. of the same type in the measurement.It leads to the fast disappearane of a.q. of eletrons disposed near disappeared nulear a.q. that is wehave the e�et similar to the measurement of a state of the form |00 . . .〉+λ1|11 . . . 1〉+λ2|22 . . .2〉+ . . ..We an hope to get the desription of EPR pairs whih demonstrate the violation of Bell inequalities,namely - the fast hange of the apparatus measuring one partile suh that the light annot get theother partile before the instant of measurement. For this we must use a.q. orresponding the di�erentbasises of measurement; but anyway, it is neessary to apply administrative signals whih spread in thesimulating system media and whih annot lead to the informational exhange between users.The interesting question: how to hoose omponents of omplex amplitude quanta of the form (39)from one partile a.q. ? When a many body system is formed by touhing of one partile bubbles, wean assume that suh omplex a.q. are formed in the sequentional ollisions of one partile a.q., if theinformation about these ollisions is somehow stored. To speify the regime of forming and dissoiationof many partile a.q. we an use geneti algorithms.Permanent measurement as norming administrative signalsThe single not loal proedure in the a.q. formalism is the annihilation and reation of a.q. that isintrodued for the preserving of its total number. This proedure is similar to the norming of a wavefuntion and it requires the signals whih spread faster then a.q. an move37; these signals are allednorming. Norming signals an arry no information forethought by a user A to a user B. But thesesignals in the model are neessary for the explanation of quantum nonloality established in the series ofexperiments38. In terms of "�lms" the norming signals mean that suh a �lm is prepared beforehand andits parts are demonstrated to a user in turn as they are ready. Here a user annot make over already doneparts but an order the following parts for a future. This preprogramming makes possible the simulationof quantum non-loality by a lassial omputational network whih we alled the administrative system.If only a user has rights to look inside it he would observe the impossible thing: signals travelling instantly.The absene of suh rights of a user just means the limitation on the speed of information transfer. This35It is reahed after the numerous redistributions of a.q. in the many step simulation of quantum evolution.36We note that it is not easier to realize experimentally suh an abstrat measurement for many bodies.37We ould say: they spread in the other media whih is aessible to the administrator but not to users.38For example, see ([As℄). 33



limitation an be reformulated in terms of a "free will" as above. It has the fundamental nature and isonneted with the prevention of logial paradoxes.One aim of the intordution of a.q. is to �nd a �rst priniple desription of the urrent quantum statein ourse of its evolution that is impossible with the onventional Hilbert formalism. The hemial methodof a.q. makes it possible. A bubble �lled with a.q. is the basi model of one partile quantum states. Todesribe its dynamis we must know what is happening with the separate a.q. Our onsideration here donot depend on what form of a.q. we use: free or bound. We have the soure of a.q. - their ollisions and itis needed only to desribe the proedure of elimination of a.q. that will guarantee the stability of its totalnumber. We agree to eliminate eah a.q. whih did not ollide in ourse of si�iently large time t > t0and to eliminate the olliding a.q. if they are mutually antitheti: xs and x−s, x ∈ {α, β} (r-redution).This method is appropriate for one free partiule moving in the spae; but yet for a partile in a potentialrelief this method an lead to too fast dereasing of the a.q. total number due to their spreading on thelarge area. To prevent this undesurable proess we will use a.q. reyling that is equivalent to the normingof wave funtion: the dissappearing a.q. will be redistributed to the other spatial positions aordinglyto the amplitude distribution found by the formula (27). An eliminated quantum must transform to itsopy with the same impulse. For free a.q we ould guarantee the determiniity by some simple trikthat is not neessary. This proedure is similar to the norming of urrent state whih is the subjet ofpermanent soft measurements39.We have already mentioned that it is not neessary to introdue the speial proedure of measurementto the algorithmi formalism. Newertheless, this trik an be not useless to speed up the preparation ofthe "�lm". Suh a measurement happens in the moment of break-up of the bubble to the two disonnetedparts40. In this ase as a new bubble we take a omponent of onnetivity in whih the �rst ollision ofa.q. of the same type has happened; the rest a.q. are redistributed on the new bubble aordingly to theproedure desribed above41 .For the realization of permanent measurements it is needed to have norming signals with the instan-taneous aess to all a.q. of the onsidered partile. These signals have no physial sense for a userbeause it annon arry any information put-up by a user. In ontrast to a.q. that are the opies of onephysial partile and whih speed annot exeed the speed of light, the signals spread instantly. It makespossible to represent not only the movement of partiles in the �eld but also the behavior of the �elditself, for example the experiments on the detetion of EPR pair (see ([As℄), that ould not be visualizedwithout administrative signals. These signals are internal proesses of the simulating system and theyannot arry any user's information thus it is ompatible with the fundamental relativisti limitation tothe speed f information transmission. It an be explained otherwise. What is alled a "free will" existsamong the users only, not in the world of a.q. and system signals, beause in that world all inludingthe results of observations are determined. Hene the signals whih determin the shape of a.q. bubblean travel with arbitrary speed without violation of the relativisti ban on the superluminal transfer ofinformation - there is no information without a "free will". Users an get an information about a.q.only through the measurements onneted with a.q. ollisions as was desribed above. This method ofinformational exhange between users of our imaginary system is authorized and it does not allow totransmit an information faster than a.q. move42. This approah an be applied for photons as well if39If the dynamis of a.q. leads to the situation when there is no a.q. in some area then from the Hilbert spaes viewpointit is equivalent to the soft measurement of wave funtin (see ([Me℄))40The reognition of this moment an be based on the permanent transmission of the speial value of onnetivity fromane quanta to the other in its ollisions. This value hanges suh that a omponent of onnetivity is haraterized by thesame value of onnetivity of all a.q. whih belong to this omponent. In partiular the onnetivity means the same valueof onnetivity of all a.q. orresponding to this partile.41The slightly di�erent method is possible when a part B1 of the bubble whih has the larger surfae loses a.q. fasterbeause they �y away and these a.q. arise anew in the other area B2, that leads to the disappearane of B1; or a ombinationof suh triks.42But if we imagine that a user has somehow learnt the positions and speeds of all a.q. in the whole spae and he has aninstantly working omputer, then he ould transmit his messages with arbitrary speed.34



we take into aount the features of eletromagneti �eld. We note that the desription of the relativismitself in terms of a.q. represents the separate task whih lies beyond the framework of this paper.Summing up, we note that the simulating proess for many body system onsists of two types of a.q.transformations
• loal reations of hemial type, and
• nonloal "norming" signals.Free amplitude quantaThe simulation with bound a.q. is based on the algebrai operations over binary notations of ampli-tudes that annot give a lassial urn model for a quantum probability. Here we show how suh a modelan be obtained if we split bound a.q. to ithe small summands alled free a.q. In terms of free a.q. wean give the lassial interpretation of a quantum probability without usage of algebrai operations andbasing on the reations of hemial type between a.q. only. Free a.q. express the grain of amplitudeswhereas bound a.q. express ompletely the grain of spae only. Using free a.q. we hope to obtain suhe�ets as oletive exitations in the simulation of many body systems, that annot be obtained if weonsider amplitudes as ontinuous. Free a.q. more orrespond to the ideology of analogous simulation,not of the digital one. This is why bound a.q. are more onvenient for pratial simulation. Free a.q.makes possible to redue all desription of quantum dynamis to the reations of hemial type; this iswhy we devote one setion to free a.q.Given an amplitude quantum q we denote its type by τ(q). Eah type has the form

xs
r, (40)where x ∈ {α, β} determins whih part of amplitude is represented by this quantum: real (α) or imaginary(β), s ∈ {+,−} determins the sign of this quantum and r is the list of the form r = j r1 . . . rk. Herethe �rst element j = 0, 1, . . . , N − 1 determins the basi state |Ψj〉 whih this amplitude orresponds toand it varies aordingly to the oordinate of this quantum (see below) and the rest elements ontain theauxiliary options of the quantum. We assume the onventional rules of handling with signs. We denoteby [xs

j ]B the total number of a.q. of the form (40) in the bubble B, where in the lower index the auxiliaryoptions and B will be often omitted. We put [xj ] = [x+
j ] − [x−j ].The result of all possible annihilations of a.q. of the types xr , x

−1
r is alled r- redution. We de�nereal nonnegative numbers

pj =
[αj ]

2 + [βj ]
2

∑

x∈A,0≤k≤N−1

[xk]2
. (41)Suh a number pj an be onsidered as a probability to obtain a real state of the form (xs

j , x
s
j) for some

x ∈ A, s ∈ {+,−} as a result of all sequential j- redutions in the bubble (j = 0, 1, . . . , N − 1), if a realstate is treated as a result of ollision of a.q. of the same type43.For a given state
|Ψ〉 =

N−1
∑

j=0

λj |Ψj〉 (42)43Of ourse, this interpretation of Born rule is muh worse than that we have done above, beause it requires the "oupling"of a.q. of the same type that is an arti�ial onstrution; newertheless it fully answer to the spirit of hemial type reationsbetween a.q. 35



of the onsidered system we denote Re λj , Im λj by αj,Ψ, βj,Ψ where the lower index Ψ will be oftenomitted. We represent a normed state (42) by some bubble B.The state (42) is alled the orresponding to a bubble B if and only if for all j, k = 0, 1, . . . , N − 1and x, y ∈ A the following equations take plae
[xj ]B
[yk]B

=
xj,Ψ

yk,Ψ
.In this ase we write |Ψ〉 = |Ψ〉B. Applying the onventional rules for alulation of probabilities weonlude that if Ψ = ΨB, then for all j = 0, 1, . . . , N − 1, pj = |λj |2 that substaniates the probabilityinterpretation of an amplitude squared module.The phase shift of the form Ψ −→ eiφΨ is represented by the list of reations between the ollidinga.q. of the form44

βs −→ βs, α−s,
αs −→ αs, βs,

(43)where s ∈ {+,−}, and φ expresses the reation rate and it dpends on a.q. density and their volume. Tomake φ independent from a.q. density we an vary the volume v(α) of eah a.q. α, so that v(α) = v0
αδt,where dt is the segment of time passed from the previous ollision of this a.q. with the a.q. orrespondingto the same partile; φ will thus be determined by the value of v0 only. We an allow for the valume thenegative values as well that an be stored with their sign in the omputer memory. We an allow alsothe negative signs for a value, that an be stored with its module in the omputer memory. Here theamplitude of amplitude quantum with negative volume is obtained as usual but is taken with the signminus (it is equivalent to that in (43) we take −s instead of s in the right side of reations). In ase offree a.q. we then have to hoose v0

α for a quantum α suh that this number is proportional to the element
δS of the ation for the quantum α, that is alulated aordingly to the formula (30). All the quantumevolution is thus simulated by the reations of the form (43)45. The a.q. number in the reations alwaysgrows that is ompensated by their dereasing in the big distanes beause we agree to eliminate eaha.q. whih has no ollisions with the others for a su�iently large time.The di�erent approah is that we onsider a.q. as pointwise objets and their ollisions happen whenthey our in the same small segments of the on�guration spae simultaneously. If the size of thesesegments goes to zero and the total number of a.q. - to in�nity we obtain the wave funtion dynamisdetermined by Shroedinger equation. If we solve it by the �nite di�erene method then the hange ofdivision points density aordingly to the rule ρ(x) = C |Ψ(x)|2 expresses the most e�ient expense ofomputational resoures for this method.We see that free a.q. not only redue the quantum probability to the lassial urn sheme but alsoredue the ontrol over evolution for arbitrary omplex Hamiltonian to the varying of a.q. sizes (just a.q.sizes depend on the potential), whereas the reations are always the same and have the form (43). Thedrawbak of free a.q. method is that here we work with numbers diretly without even appliation ofnumerial notations that generally speaking leads to exponential ost in the omputational reourses inomparizon with the bound a.q. method footnoteThe method of free a.q. ould be applied if the aurayof the amplitudes is not important in omparizon with the determining of suh basi states for whih itis not negligible, in other words when the state in eah time instant has the following form ∑

j∈J

λj |Ψj〉,where the total number of possible states J is limited indepemdently of a time instant.. The bounded44The type of the seond quantum in ollisions does not play any role and it is thus omitted. A ollision is happenedif the oordinates of the seond quantum belongs to some volume around the �rst quantum, for whih the reations arewritten.45In order to make the model more symmetrial and not to separate expliitly the real and the imaginary parts ofamplitudes we an intordue these a.q. of the types α and β in the di�erent basies of the algebra of omplex numbers ofthe form eiφj , ei(φ+ π
2

) for φj = 2jπ/N, j = 0, 1, . . . , N − 1.36



a.q. thus represent the algebrai form of free a.q., and in what follows we use just the bound for as themost onvenient for the notations.Interation between a partile and a harmoni osillatorWe onsider as an example of a.q. approah the standard problem of a harmoni osillator interatingwith a partile. This task is important beause it represent the model of interation between hargedpartile and eletromagneti �eld. Lagranjian of a system "partile+�eld" has the form (see ([FH℄):
L =

mx′2

2
− V (x, t) +

MX ′2

2
+ ω2X2 + g(x′, x, t)X(t), (44)where x and X are the oordinates of a partile and an osillator, V is the potential energy of a partile.We apply the a.q approah to this problem. It requires the answer to the following question. How tomake agree the oordinates of partile and osillator when a.q. ollide, if x and X are the oordinatesof the orresponding a.q., and we annot require their equality in the ollisions ? The simplest solutionis as follows. An amplitude quantum for the osillator has a oordinate of the form X0 + X , where

X0 determins its relative spatial position only in the simulating spae and the moments of its ollisionswith the other a.q. and does not partiipate in the reations and X is taken from the Lagranjian andit partiipates in the reations, where |∆X0| ≫ |X | in eah time instant (the swing of pendulum isnegligible in omparizon with the shift of a.q.). Correspondingly, the step of modeling of a.q. of thepartile Dt≫ δt muh exeeds the same step for the osillator.We onsider the simulation in the framework of redued Hilbert formalism.The transformation of amplitude part of j-th amplitude quantum α of osillator in the moment t′ ofits ollision with a quantum of the same type is as follows:
λ′osc

j = λosc
j ·e i

h
δSosc

j , δSosc
j =

[

M(X(t′) −X(t0))

2(t′ − t0)
+ ω2X(t′)2 + g

(

xj(t
′) − xj(t1)

t′ − t1
, xj(t

′), t′
)

Xj(t
′)

]

dt,(45)where t0 is the moment of previous ollision of the quantum α with a quantum of the same type, xj isthe oordinate of the amplitude quantum β of the partile that is oupled with α, and t1 is the momentof the last ollision of β with a quantum of the same type.A transformation of the amplitude part of a.q. of the partile looks similarly.We now show how the simulation looks in the "hemial" formalism. Here the reations in the ollisionsof a.q. of the same type: partile-partile and osillator-osillator will be as above. But to introdue theinteration partile-osillator we need the supposition about the shift of osillator itself in the spae ofordinates of a partile, e.g. the dynamis of X0. This is the serious question with the physial sense andit arrises in the redued formalism of Hilbert spaes as well, beause the law of movement of a.q. beforethe oupling is unlear. It shows that the problem reguires the additional onditions that touhe themovement of osillator. An osillator annot be onsidered as we onsidered a partile in the potentialbeause it is a arrier of the �eld itself. This is the onventional approah in the �eld theory: an osillatoris one mode of an eletormagneti �eld. We then must assume that a.q. of osillator is emitted by hargedpartiles (see below). Let we are given the law of movement of osillator a.q. in the spae of oordinates
X0. The interation between a.q. of partile and osillator takes plae in their ollisions only. If anamplitude quantum α of the osillator ollides with a quantum β of the partile we an agree that thereation goes aordingly to the formula (45), and the reation for the amplitude part of β has the sameform. Sine the summand of interation g (xj(t

′)−xj(t1)
t′−t1

, xj(t
′), t′

)

Xj(t
′) ours twie we ould put 1/2before the oe�ient - it an be inluded to the existing oe�ient g. It gives the algorithmi redutionof Hilbert formalism if we ompose the omplex amplitude quanta for many body problem along themethod desribed above. 37



If there are several osillators and they do not interat then the transformations of the ampltude partsof a.q. have the similar form if we take into aount the di�erent frequenes ω; the ase of interatingosillators an be redued to the ase of not interating by the ange of the oordinate system (see ([FH℄)),or to write for the interating osillators the transformations analogous to (45).We note that to organize the ollisions between the a.q. of the partile and osillator we need thespeial assumption about the movements of osillator a.q., e.g., how X0 varies. Here we asume thata.q. moves haotially, suh that the hange of X0 guarantees the number of ollisions su�ient for thereahing of the required auray.Several harged bodies in the eletromagneti �eldWe assumed above that the bodies have the nonzero masses. This onsideration an be applied tothe ase of salar Coulomb �eld as well. But if we try to inlude the separaet photons to the Lagranjianthen we would meet the ertain di�ulties beause photons do not disperse the �eld but they arryit. It requires the radially di�erent approah based on the mein law of eletrodynamis - the Maxwellequations. The a.q. approah must be su�iently �exible that it an be extended to photons. In thissetion we trae this extension, using the onsidered problem of interation between a partile and aharmoni osillator. We onsider a system of harged partiles with an eletromagneti �eld. The aseof many partiles is obtained from the ase of one partile by the forming of the omplex a.q. for manypartiles and permutations of equivalent partiles as was shown above. The spei�ity of onsiderationwith an eletromagneti �eld is thus revealed already in the ase of one partile + �eld. This aseis represented as a partile interating with a system of harmoni osillators whih represents a �eld.This passage needs one partiular agreement resulted from the Maxwell equations and whih we mustassume beause this is the agreement that the value of the vetor potential of a �eld is obtained by thesumming of the harmoni osillator oordinates. Photons are quantum of an eletromagneti �eld, andwe must apply our ollision model to the photon a.q. that gives the lassial explanation of the quantumprobabilities. But we should onsider photon a.q. aounting the photons spei�ity - as a system ofharmoni osillators interating with a partiles, the more so as the expansion of a �eld to photons takesplae in the impulse representation of the state spae but not in the oordinate representation. Followingour rules from the previous setion we asuume that the photon a.q. move so fast that the big numberof them have visited the viinity of a given �xed point in the time frame ∆t when an adrone shiftson one step suh that we an sum these a.q. and expand the �eld to photons. We onsider a systemof harged partiles with the density ρ in an eletri and magneti �elds with �eld strengths E and Borrespondingly. We de�ne the density vetor of a harge e in a point R, t in its shift aAlong the urve q(t)as j(R, t) = eq′(t)δ3(R− q(t)), where δ3 is the three dimension delta-funtion. The main law of evolutionfor suh a system is the system of three Maxwell equations and the equation of a harge onservation:
∇ E = 4πρ,
∇ B = 0′

∇× E = − 1
c

∂B
∂t ,

∇×B = − 1
c

(

∂E
∂t + 4πj

)

,

∇j = −∂ρ
∂t .

(46)Here the vetor and salar potentials of eletromagneti �eld an be obtained from the equation
E = −∇φ− 1

c

∂A

∂t
.
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We onsider the impulse representation of magnitudes partiipating in the Maxwell equations:
A(R, t) =

√
4πc

∫

āke
ikR d3k

(2π)3 ,

φ(R, t) =
∫

φk(t)eikR d3k
(2π)3 ,

j(R, t) =
∫

jk(t)eikR d3k
(2π)3 ,

ρ(R, t) =
∫

ρk(t)eikR d3k
(2π)3 .

(47)We an agree that (see ([AB, FH℄) āk = (a1,k, a2,k) is the expansion of vetor ak to two omponentsorthogonal to k; the orresponding diretions are alled the diretions of polarization. We assume thatthese diretions are hosen for eah vetor of impulse k arbitrary and �x this hoie.The ation for suh a system is de�ned as S = Sparticles + Sfield + Sint, where:
Sparticles =

∫
∑

j

(

mq′2
j

2 +
∑

l

ejel

|qj−ql|

)

dt,

Sfield = 1
2

∫

(a′∗1,ka
′
1,k − k2c2a∗1,ka1,k + a′∗2,ka

′
2,k − k2c2a∗2,ka2,k)d3kdt

(2π)3 ,

Sint =
√

4π
∑

j

∫

(a1,kq
′
1,j + a2,kq

′
2,j)e

ikqj (t) d3kdt
(2π)3 ,

(48)where q1,j , q2,j are the projetions of the vetor q̄ to the dirtions of polarization. The quantum evolu-tion of the onsidered system an be obtained by the formulas (26),(25), if we take the sum of ationsdetermined by (48) in plae of S.A state of our system is represented in the form of a bubble B, �lled by a.q. of two di�erent types:a.q. of a partile and a.q. of photons of vetor �eld46.We apply to suh a system many partile approah desribed above, taking into aount that photonsarry the �eld 47.We assoiate with eah vetor of impulse k two mutually orthogonal and orthogonal to k vetors ofpolarization pk,1 and pk,2. We desribe a.q. of photons of the vetor �eld, that have some peuliarityoneled with the polarization. An amplitude quantum α of photon has the amplitude λα, the oordinate
X0,α, vetor of impulse kα, and the osillator oordinates a1,α, a2,α, that are the omplex numbers48. Forthe modeling of the system evolution in the eletromagneti �eld we should at �rst pass to the impulserepresentation of a.q. that means, aordingly to our method, the multipliation of their amplitude partsto the phase multiplier e−ik̄x̄. We then an use the standard ollision model with only one orretionre�eting the feature of interation between the �eld and the partiles. We assume that the trajetoriesand impulses of the photon a.q. are not hanged in the ollisions with eah other. In other words theimpulse k does not partiipate in the proess of hange of the photon amplitude (that orresponds to theexpression (48), and also with that the oordinate representation of a photon wave funtion has not suha sense as for the massive partiles (see ([AB℄).46If we want to expand a salar �eld to photons as well, that orresponds to the derivation of photons from Maxwellequations (46) (see, for example, ([AB℄), then we must introdue the photons whih arry the salar �eld, as was explainedabove.47If we deal with the bound a.q. we must assume that they are redistributed as was pointed above: a quantum of vetorphoton dissappearing at the periphery of a bubble is replaed by a quantum emitted by some of harged partiles, whereits oordinate and impulse is hosen arbitrarily aording to the distribution determined by the wave funtion. In aseof free a.q. this mehanism of photon a.q. reprodution is supplemented with their birth in the ollisions with a.q. of apartile. The desribed sheme makes possible to alulate approximately the real physial values haraterizing a �eld. Forexample, the alulation of the vetor potential A in the point R in a time instant t an be done by the following formula

A(R, t) =
√

4πc
∑

τ∈[t,t+δt], α(τ)∈CR

X̄α(τ)a
ikα(τ)R ,whih is the translation of (47) to the a.q. language.48Instead of these oordinates that are onneted with the hosen diretion of polarization we ould use the vetor ofpolarization orthogonal to the photon impulse. 39



As earlier, we at �rst onsider our problem in the redued Hilbert formalism. Let a photon amplitudequantum α be oupled with a partile amplitude quantum β with impulse j = kα. The transformationof the amplitude part of α in a ollision with other photon a.q. has the form
λ′α = λα · e i

h
δ(S1,α+S2,α),

δS1,α = 1
2

[

∣

∣

∣

a1,α(t′)−a1,α(t0)
(t′−t0)

∣

∣

∣

2

+
∣

∣

∣

a2,α(t′)−a2,α(t0)
(t′−t0)

∣

∣

∣

2

− k2
αc

2(|a1,α|2 + |a2,α|2)
]

(t′ − t0),

S2,α =
√

4π
(2π)3 sign(eβ)

(

a1,α
x1,β(t′)−x1,β(t1)

t′−t1
+ a2,α

x2,β(t′)−x2,β(t1)
t′−t1

)

eij·xβ (t′ − t0),where x1,β , x2,β are the omponents of vetor xβ along pk,1 and pk,2; where if α is oupled in a list withthe others a.q. the orresponding summands must be added to the element of ation. We now onsiderthe transformation of amplitude parts of a partile quantum β in its ollision with a.q. of the same type.For example, let it be oupled in the list with α and with a.q. γ of the other partile. The amplitudepart then transformes as:
λ′β = λβ · e i

h
δ(S3,α+S2,α),

δS3,α =
msign(eβ)(xβ(t′)−xβ(t1))2

2 +
eβeγ

|xβ(t′)−xγ(t′)| ) dt,If a quantum β is oupled in the list with the others a.q. of partiles, then the orresponding summandmust be added to the element of ation.To pass to the "hemial" formalism we must do the hanges in the proposed sheme as in the aseof a partile and osillator.Appendix 2.About the simulation of Lorentz invarianeThe starting point of relativity is Lorentz invariane of the laws of Nature, e.g., the onservation ofpseudo-Eulidean metri of the spae-time in the passages from one inertial frame to the other. Here bythe "laws of Nature" we mean the events that happen on some segment of a pointwise partile trajetoryin the spae-time with oordinates x, y, z, t. If we express suh laws by di�erential equations, we assumethat this segment is very small omparatively with the length of a trajetory, and its oordinates are
dx, dy, dz, dt. Pseudo-Eulidean metri is determined as ds2 = dx2 + dy2 + dz2 − dt2 (we hoose thesystem of units so that the speed of light equals 1. Lorentz invariane then means that if we denote byprimed variables the values of the orresponding magnitudes in the other inertial frame, then the followingequality is true: ds2 = ds′2. In order to onsider how this fat an be represented in the algorithmiapproah it is required to de�ne the omputational network whih plays the role of inertial frame. It isdone in the next setion.3.1 Multihead Turing mahinesWe assume the formalization of algorithms in the form of multihead Turing mahines49.We preeed with the de�nition of multihead Turing mahines. Suh a mahine onsists of threeobjets: a set of tapes divided into ells, a set of heads and a set of rules for heads shifts whih have theform:

aj1 , aj2 , . . . , ajl
; qk1 , qk2 , . . . , qkl

−→ aj′
1
, aj′

2
, . . . , aj′

l
; qk′

1
, qk′

2
, . . . , qk′

l
; Sr1 , Sr2 , . . . , Srl49Markov normal algoritms response to our idea as well. Cellular automata are not appropriate beause it do not allowto simulate quantum non-loality. 40



where ajt
, qkt

denote the ontents of ell observed by t-th head and the state of this head before theappliation of the rule, the primed symbols denote these values after the appliation of the rule, and Srtdenotes the shift whih has to be done aver this head, it takes a value from: shift to right, shift to left,no shift. We an launh several Turing mahines on the same set of tapes and make the rules for themdependent not only of ells ontents and heads onditions, but of what heads of what other mahinesobserve these ells. So ompliated rules have the following form:
aj1 , aj2 , . . . , ajl

; qk1 , qk2 , . . . , qkl
; x̄h1 , x̄h2 , . . . , x̄hl

−→ aj′1
, aj′2

, . . . , aj′
l
; qk′

1
, qk′

2
, . . . , qk′

l
; Sr1 , Sr2 , . . . , Srlwhere x̄ht

is a list onsists of the pairs of the form: (a head number, the orresponding mahine number)for all heads observing the ell whih is observed by t-th head of the onsidered mahine. The di�erentmahines will thus interat. We an assume that eah many partile amplitude quantum orresponds toexatly one Turing mahine whih number of heads equals to the number of entangled partiles. Thenumber of heads does not in�uene to our onlusions but we an assume that eah mahine has twoheads only that orresponds to the hierarhial model for many partiles systems. All the mahines willthus have the same rules that are de�ned by the interations between the partiles. It is easy to desribethe quantum non-loality in terms of multihead Turing mahines beause it is ontained in the rulesof mahines. For example, for a pair of entangled photons eah head points to the spatial loation oftheir amplitude quanta that form a pair. When the loal onditions lead to the elimination of one ofsuh quanta, we do not need the speial "kill signal" speading from this quantum to its ounterpart;the elimination of the both quanta is guaranteed by the appliation of rule. The realization of rules formultihead Turing mahines is the job of the administrative segment.Multihead Turing mahines give the single treatment of a simultaneity of events in quantum physisthat results from the entanglement of the partiles. Suh a simultaneity onsists in the appliation of arule to a set of spatially distant heads. Perhaps there are no other simple way to introdue a simultaneityin quantum formalizm.3.2 Why quadrati number of steps is required for simulationEvery inertial frame an be represented as a set of multihead Turing mahines. Its ommon memory isthus a model of spae in this frame. This frame is used as a gage rod for the measuring of the dynamis ofobjets that lie beyond this frame, for example, partiles moving relatively to it. This gage rod physiallyis the solid objet onsisting of atoms with �xed positions. Given two suh frames whih move relativelyto eah other with the onstant speed, the onservation of pseudo-Eulidean metri means the rule ofagreement between two frames in the desription of the same proess in the both frames. Suh rules mustaount the algorithmi desription of a dynamis in the both systems, in partiular the limitation onthe maximal permissible speed of partiles in the user segment; the lassial law of adding of speeds isthus not appliable here. The rule of agreement must not be lassial. We show one argument for thatthis rule must give the onservation of pseudo-Eulidean metri.It was mentioned above that the formal notion of simultaneity for Turing mahines is not physiallyadequate. A simultaneity takes plae for the ells observed by heads only in the moment of appliation ofsome rule. For the time rekoning in a given inertial frame some standard physial proess an be used,for example, the �ight of photon through the hain of atoms disposed along the onsidered trajetory.Sine it is desribed by means of quantum physis, for example, by amplitude quanta, in the modelling oftime frame dt we must onsider all pairs of points on the trajetory (and even in some viinity of it whihthikness is �xed and independent of its length). Eah of suh pairs orresponds to starting and �nalpoints of some amplitude quantum used for the re-ount of the wave funtion in the next time instant50.50It does not ontradit to that the speed of all photons is the same. The speed of photons arises after the interfereneof all amplitude quanta only. Here some of them an interat with atoms as was desribed in the Apendix 1.41



For the simulation of internal proesses in our frame in the time dt we must use all states of two headTuring mahine ating on the tape of size dt, e.g., of the order dt2 elementary operations.We now onsider the proess of the observation the events that happen with partiles whih are notontained in this gage rod. In this proess the pairs of heads will arise whih are loated a distane ofthe order of dS =
√

dx2 + dy2 + dz2 one from another. For example, if suh an atom whih is disposedoutside our gage rod emits a photon, the di�erent photom a.q. are emitted when this atom oupies thedi�erent positions relatively to our gage rod. Here all external partiles for our gage rod are representedby the same ells on the tapes as the internal parts of the gage rod itself. For the simulation of allproesses: external and internal it is required the total number of elementary operations of the order
dS2. Here the oe�ient does not depend on dt and is determined by the starting and �nal moment ofthe simulation, but not by the internal time of this frame. If we want to know how many omputationalsteps we have for the simulation of the external praesses we must subtrat the number of operationsrequired for the simulation of internal proesses from the total number of operations. We suh obtainthe value of the form c1dS

2 − c2dt
2. We then an imagine that this number of steps required for thesimulation of external (e.g., measured) system is the measure of the omplexity of its desription in thisframe. And the equivalene of inertial frames then means that this measure of omplexity must be thesame for all inertial frames, that gives the onservation of pseudo-Eulidean metri in passages from oneframe to the other. The quadrati dependene of the quantity of steps in algorithm from the physialvalues of the length and the time thus results from the method of the alulation of wave funtion throughFeynman pass integrals if we apply for this alulation the disretization by amplitude quanta.This desription is not rigorous, let alone to pretend to be the single possible. We have represented itin order to show that the algorithmi approah does not ontradit to Lorentz invariane of the physiallaws.
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