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Introduction
We study quantum walks of identical particles on graphs.
Due to the quantum information perspectives, the in-
terest to quantum walks increased recently [1]. Apart
from quantum information applications, quantum walks
may explain the energy transfer within photosynthetic
systems [2] and provide the speedup to active learning
agents [3].
There are several ways to define quantum walks, in this
work the walks are continuous-time and defined by the
time-independent Hamiltonian

H = Ω
N−1∑
i=0

|xi+1 mod N〉〈xi|+ |xi〉〈xi+1 mod N|,

where xi is the coordinate of the node i with the to-
tal number of nodes N, Ω is the tunnelling amplitude.
It was shown that one-particle continuous-time quantum
walk of the described form could perform any quantum
computation and the necessary gates were provided [4].

Quantum walks of electron in
quantum dot nanostructures

Quantum dots are promising elements for quantum com-
putations. Quantum dot qudit consists of quantum dots
with one electron connected by tunnelling. Dots them-
selves are formed from the two-dimensional electron gas
by field of gates and these dots are controlled by poten-
tials on gates. As a result we have a qudit basis states
|0〉, |1〉, ... and |N〉 , which describe the localization of an
electron in 0-th, 1-st orN-th place, respectively. The abil-
ity to perform some quantum operations was proven. The
quantum walks of non-interacting distinguishable particles
are equivalent to one-particle walks, whose dynamics have
already been studied [5].
The probability of particle to be in the node 0 at time
t [5] is

P0(t) =
1

N
+

N−1∑
m,n=0

1− δm+n,0 − δm+n,N

N2
×

× exp
4iΩt sin π(m+ n)

N
cos π(m− n)

N

 .

For N = 4 and N = 6 there are the periods of quantum
walks. They are T = π/Ω and T = 2π/

√
3Ω, respec-

tively [6].

Two-electron quantum walk
In universal quantum computation by one-particle quan-
tum walk the number of components scales exponentially
with the number of encoded qubits. One can decrease the
number of components by using two particles in the quan-
tum walk. One way of realizing the two-particle quantum
walk is by two electrons tunneling between the quantum
dots in silicon.
We consider a cycle graph with N nodes and two identi-
cal electrons in these nodes. Hopping Hamiltonian of the
non-interacting electrons is

H = Ω
N−1∑
i,j=0

|xi+1, yj〉〈xi, yj|+ |xi, yj〉〈xi+1, yj|+

+ |xj, yi+1〉〈xj, yi|+ |xj, yi〉〈xj, yi+1|,

where xi and yi are the coordinates of the first and the
second indistinguishable particle respectively. Spins of the

electrons are directed upwards |↑↑〉. The graph and the
charge density dynamics are shown in Figs. 1 and 2, re-
spectively.
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Figure 1: The scheme of two-particle quantum walk on
a cycle graph with 8 nodes. Electrons are initially in the
0-th and the 4-th nodes, that is the fermionic state is
|ψ〉 = (|04〉− |40〉)|↑↑〉/√2.
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Figure 2: Charge density dynamics in all nodes. There is
no hopping period as it is in the cases of 4 and 6 nodes.
The graph and the initial state are shown in Fig. 1.

Interacting electrons

The hopping Hamiltonian with the restriction of being
in the neighbouring sites of the circle graph because of
Coulomb interaction [6]:

H = Ω
N−1∑

i,j=0;j 6=i,i±1,i+2
|xi+1, yj〉〈xi, yj|+

+ |xi, yj〉〈xi+1, yj|+ |xj, yi+1〉〈xj, yi|+ |xj, yi〉〈xj, yi+1|.
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Figure 3: Charge density dynamics in the case of
interacting electrons. The graph and the initial state are
shown in Fig. 1.

Coulomb interaction causes the quantum correlations be-
tween the electrons, i.e. qudits become entangled. This
fact can be estimated by a definition of the fermionic en-
tanglement. The fermionic wave function is called entan-
gled if Slater rank is grater than one. Or, equivalently, a
pure state of K identical fermions is separable if and only
if the purity of the single-particle reduced density matrix
is equal to 1/K. If 1/n ≤ Trρ21 < 1/K, then the Slater
rank is grater than one and the state is entangled. n is
the dimension of the single particle state space.
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Figure 4: Linear entropy SL = 1− Trρ21 represents the
entanglement dynamics. The dynamics starts from a
separable state

Trρ21 = 1/2
. One can see that

SL > 1/2 for t > 0, i.e. two fermions become entangled
during the quantum walk. In the case with N = 6 nodes
system returns periodically to the separable state (black
dashed line). The dashed lines of corresponding colors
show the upper bound for entangled states [6].

Influence of decoherence on
quantum walks

Semiconductor quantum dots are promising elements for
quantum computation, but decoherence is a significant
obstacle. The decoherence process of a one-particle state
in this system was studied in [5] and we study it further by
considering two interacting fermions. We investigate the
entanglement dynamics in the realistic scenario of deco-
herence presence. The proposed scheme for two-particle
quantum walk could be used for entangling gates con-
struction.
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Figure 5: Linear entropy DL = SL(ρ1) − SL(ρ) − 1/2

represents the entanglement dynamics of the mixed
fermionic state. In the regions, where DL > 0, electrons
are entangled. Depending on the noise parameters
fermionic entanglement can be created for a certain time
or re-created after annihilation.
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